@misc{HeinzKieferSmolkaetal.2020, author = {Heinz, Andreas and Kiefer, Falk and Smolka, Michael N. and Endrass, Tanja and Beste, Christian and Beck, Anne and Liu, Shuyan and Genauck, Alexander and Romund, Lydia and Rapp, Michael Armin and Tost, Heike and Spanagel, Rainer}, title = {Addiction research consortium: losing and regaining control over drug intake (ReCoDe) - from trajectories to mechanisms and interventions}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {2}, issn = {1866-8364}, doi = {10.25932/publishup-52597}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525972}, pages = {8}, year = {2020}, abstract = {One of the major risk factors for global death and disability is alcohol, tobacco, and illicit drug use. While there is increasing knowledge with respect to individual factors promoting the initiation and maintenance of substance use disorders (SUDs), disease trajectories involved in losing and regaining control over drug intake (ReCoDe) are still not well described. Our newly formed German Collaborative Research Centre (CRC) on ReCoDe has an interdisciplinary approach funded by the German Research Foundation (DFG) with a 12-year perspective. The main goals of our research consortium are (i) to identify triggers and modifying factors that longitudinally modulate the trajectories of losing and regaining control over drug consumption in real life, (ii) to study underlying behavioral, cognitive, and neurobiological mechanisms, and (iii) to implicate mechanism-based interventions. These goals will be achieved by: (i) using mobile health (m-health) tools to longitudinally monitor the effects of triggers (drug cues, stressors, and priming doses) and modify factors (eg, age, gender, physical activity, and cognitive control) on drug consumption patterns in real-life conditions and in animal models of addiction; (ii) the identification and computational modeling of key mechanisms mediating the effects of such triggers and modifying factors on goal-directed, habitual, and compulsive aspects of behavior from human studies and animal models; and (iii) developing and testing interventions that specifically target the underlying mechanisms for regaining control over drug intake.}, language = {en} } @article{HeinzKieferSmolkaetal.2020, author = {Heinz, Andreas and Kiefer, Falk and Smolka, Michael N. and Endrass, Tanja and Beste, Christian and Beck, Anne and Liu, Shuyan and Genauck, Alexander and Romund, Lydia and Rapp, Michael Armin and Tost, Heike and Spanagel, Rainer}, title = {Addiction research consortium: losing and regaining control over drug intake (ReCoDe) - from trajectories to mechanisms and interventions}, series = {Addiction Biology}, volume = {25}, journal = {Addiction Biology}, number = {2}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {6}, year = {2020}, abstract = {One of the major risk factors for global death and disability is alcohol, tobacco, and illicit drug use. While there is increasing knowledge with respect to individual factors promoting the initiation and maintenance of substance use disorders (SUDs), disease trajectories involved in losing and regaining control over drug intake (ReCoDe) are still not well described. Our newly formed German Collaborative Research Centre (CRC) on ReCoDe has an interdisciplinary approach funded by the German Research Foundation (DFG) with a 12-year perspective. The main goals of our research consortium are (i) to identify triggers and modifying factors that longitudinally modulate the trajectories of losing and regaining control over drug consumption in real life, (ii) to study underlying behavioral, cognitive, and neurobiological mechanisms, and (iii) to implicate mechanism-based interventions. These goals will be achieved by: (i) using mobile health (m-health) tools to longitudinally monitor the effects of triggers (drug cues, stressors, and priming doses) and modify factors (eg, age, gender, physical activity, and cognitive control) on drug consumption patterns in real-life conditions and in animal models of addiction; (ii) the identification and computational modeling of key mechanisms mediating the effects of such triggers and modifying factors on goal-directed, habitual, and compulsive aspects of behavior from human studies and animal models; and (iii) developing and testing interventions that specifically target the underlying mechanisms for regaining control over drug intake.}, language = {en} } @article{ObstSchadHuysetal.2018, author = {Obst, Elisabeth and Schad, Daniel and Huys, Quentin J. M. and Sebold, Miriam Hannah and Nebe, Stephan and Sommer, Christian and Smolka, Michael N. and Zimmermann, Ulrich S.}, title = {Drunk decisions}, series = {Journal of Psychopharmacology}, volume = {32}, journal = {Journal of Psychopharmacology}, number = {8}, publisher = {Sage Publ.}, address = {London}, issn = {0269-8811}, doi = {10.1177/0269881118772454}, pages = {855 -- 866}, year = {2018}, abstract = {Background: Studies in humans and animals suggest a shift from goal-directed to habitual decision-making in addiction. We therefore tested whether acute alcohol administration reduces goal-directed and promotes habitual decision-making, and whether these effects are moderated by self-reported drinking problems. Methods: Fifty-three socially drinking males completed the two-step task in a randomised crossover design while receiving an intravenous infusion of ethanol (blood alcohol level=80 mg\%), or placebo. To minimise potential bias by long-standing heavy drinking and subsequent neuropsychological impairment, we tested 18- to 19-year-old adolescents. Results: Alcohol administration consistently reduced habitual, model-free decisions, while its effects on goal-directed, model-based behaviour varied as a function of drinking problems measured with the Alcohol Use Disorders Identification Test. While adolescents with low risk for drinking problems (scoring <8) exhibited an alcohol-induced numerical reduction in goal-directed choices, intermediate-risk drinkers showed a shift away from habitual towards goal-directed decision-making, such that alcohol possibly even improved their performance. Conclusions: We assume that alcohol disrupted basic cognitive functions underlying habitual and goal-directed decisions in low-risk drinkers, thereby enhancing hasty choices. Further, we speculate that intermediate-risk drinkers benefited from alcohol as a negative reinforcer that reduced unpleasant emotional states, possibly displaying a novel risk factor for drinking in adolescence.}, language = {en} } @misc{KaminskiSchlagenhaufRappetal.2018, author = {Kaminski, Jakob A. and Schlagenhauf, Florian and Rapp, Michael Armin and Awasthi, Swapnil and Ruggeri, Barbara and Deserno, Lorenz and Banaschewski, Tobias and Bokde, Arun L. W. and Bromberg, Uli and B{\"u}chel, Christian and Quinlan, Erin Burke and Desrivi{\`e}res, Sylvane and Flor, Herta and Frouin, Vincent and Garavan, Hugh and Gowland, Penny and Ittermann, Bernd and Martinot, Jean-Luc and Paill{\`e}re Martinot, Marie-Laure and Nees, Frauke and Papadopoulos Orfanos, Dimitri and Paus, Tom{\´a}š and Poustka, Luise and Smolka, Michael N. and Fr{\"o}hner, Juliane H. and Walter, Henrik and Whelan, Robert and Ripke, Stephan and Schumann, Gunter and Heinz, Andreas}, title = {Epigenetic variance in dopamine D2 receptor}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {950}, issn = {1866-8372}, doi = {10.25932/publishup-42568}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425687}, pages = {13}, year = {2018}, abstract = {Genetic and environmental factors both contribute to cognitive test performance. A substantial increase in average intelligence test results in the second half of the previous century within one generation is unlikely to be explained by genetic changes. One possible explanation for the strong malleability of cognitive performance measure is that environmental factors modify gene expression via epigenetic mechanisms. Epigenetic factors may help to understand the recent observations of an association between dopamine-dependent encoding of reward prediction errors and cognitive capacity, which was modulated by adverse life events. The possible manifestation of malleable biomarkers contributing to variance in cognitive test performance, and thus possibly contributing to the "missing heritability" between estimates from twin studies and variance explained by genetic markers, is still unclear. Here we show in 1475 healthy adolescents from the IMaging and GENetics (IMAGEN) sample that general IQ (gIQ) is associated with (1) polygenic scores for intelligence, (2) epigenetic modification of DRD2 gene, (3) gray matter density in striatum, and (4) functional striatal activation elicited by temporarily surprising reward-predicting cues. Comparing the relative importance for the prediction of gIQ in an overlapping subsample, our results demonstrate neurobiological correlates of the malleability of gIQ and point to equal importance of genetic variance, epigenetic modification of DRD2 receptor gene, as well as functional striatal activation, known to influence dopamine neurotransmission. Peripheral epigenetic markers are in need of confirmation in the central nervous system and should be tested in longitudinal settings specifically assessing individual and environmental factors that modify epigenetic structure.}, language = {en} } @article{KaminskiSchlagenhaufRappetal.2018, author = {Kaminski, Jakob A. and Schlagenhauf, Florian and Rapp, Michael Armin and Awasthi, Swapnil and Ruggeri, Barbara and Deserno, Lorenz and Banaschewski, Tobias and Bokde, Arun L. W. and Bromberg, Uli and B{\"u}chel, Christian and Quinlan, Erin Burke and Desrivieres, Sylvane and Flor, Herta and Frouin, Vincent and Garavan, Hugh and Gowland, Penny and Ittermann, Bernd and Martinot, Jean-Luc and Martinot, Marie-Laure Paillere and Nees, Frauke and Orfanos, Dimitri Papadopoulos and Paus, Tomas and Poustka, Luise and Smolka, Michael N. and Fr{\"o}hner, Juliane H. and Walter, Henrik and Whelan, Robert and Ripke, Stephan and Schumann, Gunter and Heinz, Andreas}, title = {Epigenetic variance in dopamine D2 receptor}, series = {Translational Psychiatry}, volume = {8}, journal = {Translational Psychiatry}, publisher = {Nature Publ. Group}, address = {New York}, organization = {IMAGEN Consortium}, issn = {2158-3188}, doi = {10.1038/s41398-018-0222-7}, pages = {11}, year = {2018}, abstract = {Genetic and environmental factors both contribute to cognitive test performance. A substantial increase in average intelligence test results in the second half of the previous century within one generation is unlikely to be explained by genetic changes. One possible explanation for the strong malleability of cognitive performance measure is that environmental factors modify gene expression via epigenetic mechanisms. Epigenetic factors may help to understand the recent observations of an association between dopamine-dependent encoding of reward prediction errors and cognitive capacity, which was modulated by adverse life events. The possible manifestation of malleable biomarkers contributing to variance in cognitive test performance, and thus possibly contributing to the "missing heritability" between estimates from twin studies and variance explained by genetic markers, is still unclear. Here we show in 1475 healthy adolescents from the IMaging and GENetics (IMAGEN) sample that general IQ (gIQ) is associated with (1) polygenic scores for intelligence, (2) epigenetic modification of DRD2 gene, (3) gray matter density in striatum, and (4) functional striatal activation elicited by temporarily surprising reward-predicting cues. Comparing the relative importance for the prediction of gIQ in an overlapping subsample, our results demonstrate neurobiological correlates of the malleability of gIQ and point to equal importance of genetic variance, epigenetic modification of DRD2 receptor gene, as well as functional striatal activation, known to influence dopamine neurotransmission. Peripheral epigenetic markers are in need of confirmation in the central nervous system and should be tested in longitudinal settings specifically assessing individual and environmental factors that modify epigenetic structure.}, language = {en} } @article{FriedelSeboldKuitunenPauletal.2017, author = {Friedel, Eva and Sebold, Miriam Hannah and Kuitunen-Paul, S{\"o}ren and Nebe, Stephan and Veer, Ilya M. and Zimmermann, Ulrich S. and Schlagenhauf, Florian and Smolka, Michael N. and Rapp, Michael Armin and Walter, Henrik and Heinz, Andreas}, title = {How Accumulated Real Life Stress Experience and Cognitive Speed Interact on Decision-Making Processes}, series = {Frontiers in human neuroscienc}, volume = {11}, journal = {Frontiers in human neuroscienc}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2017.00302}, pages = {1 -- 9}, year = {2017}, abstract = {Rationale: Advances in neurocomputational modeling suggest that valuation systems for goal-directed (deliberative) on one side, and habitual (automatic) decision-making on the other side may rely on distinct computational strategies for reinforcement learning, namely model-free vs. model-based learning. As a key theoretical difference, the model-based system strongly demands cognitive functions to plan actions prospectively based on an internal cognitive model of the environment, whereas valuation in the model-free system relies on rather simple learning rules from operant conditioning to retrospectively associate actions with their outcomes and is thus cognitively less demanding. Acute stress reactivity is known to impair model-based but not model-free choice behavior, with higher working memory capacity protecting the model-based system from acute stress. However, it is not clear which impact accumulated real life stress has on model-free and model-based decision systems and how this influence interacts with cognitive abilities. Methods: We used a sequential decision-making task distinguishing relative contributions of both learning strategies to choice behavior, the Social Readjustment Rating Scale questionnaire to assess accumulated real life stress, and the Digit Symbol Substitution Test to test cognitive speed in 95 healthy subjects. Results: Individuals reporting high stress exposure who had low cognitive speed showed reduced model-based but increased model-free behavioral control. In contrast, subjects exposed to accumulated real life stress with high cognitive speed displayed increased model-based performance but reduced model-free control. Conclusion: These findings suggest that accumulated real life stress exposure can enhance reliance on cognitive speed for model-based computations, which may ultimately protect the model-based system from the detrimental influences of accumulated real life stress. The combination of accumulated real life stress exposure and slower information processing capacities, however, might favor model-free strategies. Thus, the valence and preference of either system strongly depends on stressful experiences and individual cognitive capacities.}, language = {en} } @article{SeboldDesernoNebeetal.2014, author = {Sebold, Miriam Hannah and Deserno, Lorenz and Nebe, Stefan and Schad, Daniel and Garbusow, Maria and Haegele, Claudia and Keller, Juergen and Juenger, Elisabeth and Kathmann, Norbert and Smolka, Michael N. and Rapp, Michael Armin and Schlagenhauf, Florian and Heinz, Andreas and Huys, Quentin J. M.}, title = {Model-based and model-free decisions in alcohol dependence}, series = {Neuropsychobiology : international journal of experimental and clinical research in biological psychiatry, pharmacopsychiatry, Biological Psychology/Pharmacopsychology and Pharmacoelectroencephalography}, volume = {70}, journal = {Neuropsychobiology : international journal of experimental and clinical research in biological psychiatry, pharmacopsychiatry, Biological Psychology/Pharmacopsychology and Pharmacoelectroencephalography}, number = {2}, publisher = {Karger}, address = {Basel}, issn = {0302-282X}, doi = {10.1159/000362840}, pages = {122 -- 131}, year = {2014}, abstract = {Background: Human and animal work suggests a shift from goal-directed to habitual decision-making in addiction. However, the evidence for this in human alcohol dependence is as yet inconclusive. Methods: Twenty-six healthy controls and 26 recently detoxified alcohol-dependent patients underwent behavioral testing with a 2-step task designed to disentangle goal-directed and habitual response patterns. Results: Alcohol-dependent patients showed less evidence of goal-directed choices than healthy controls, particularly after losses. There was no difference in the strength of the habitual component. The group differences did not survive controlling for performance on the Digit Symbol Substitution Task. Conclusion: Chronic alcohol use appears to selectively impair goal-directed function, rather than promoting habitual responding. It appears to do so particularly after nonrewards, and this may be mediated by the effects of alcohol on more general cognitive functions subserved by the prefrontal cortex.}, language = {en} } @misc{GarbusowSommerNebeetal.2018, author = {Garbusow, Maria and Sommer, Christian and Nebe, Stephan and Sebold, Miriam Hannah and Kuitunen-Paul, S{\"o}ren and Wittchen, Hans-Ulrich and Smolka, Michael N. and Zimmermann, Ulrich S. and Rapp, Michael Armin and Huys, Quentin J. M. and Schlagenhauf, Florian and Heinz, Andreas}, title = {Multi-level evidence of general pavlovian-to-instrumental transfer in alcohol use disorder}, series = {Alcoholism : clinical and experimental research ; the official journal of the American Medical Society on Alcoholism and the Research Society on Alcoholism}, volume = {42}, journal = {Alcoholism : clinical and experimental research ; the official journal of the American Medical Society on Alcoholism and the Research Society on Alcoholism}, publisher = {Wiley}, address = {Hoboken}, issn = {0145-6008}, pages = {128A -- 128A}, year = {2018}, language = {en} } @article{SchadGarbusowFriedeletal.2018, author = {Schad, Daniel and Garbusow, Maria and Friedel, Eva and Sommer, Christian and Sebold, Miriam Hannah and H{\"a}gele, Claudia and Bernhardt, Nadine and Nebe, Stephan and Kuitunen-Paul, S{\"o}ren and Liu, Shuyan and Eichmann, Uta and Beck, Anne and Wittchen, Hans-Ulrich and Walter, Henrik and Sterzer, Philipp and Zimmermann, Ulrich S. and Smolka, Michael N. and Schlagenhauf, Florian and Huys, Quentin J. M. and Heinz, Andreas and Rapp, Michael Armin}, title = {Neural correlates of instrumental responding in the context of alcohol-related cues index disorder severity and relapse risk}, series = {European archives of psychiatry and clinical neuroscience : official organ of the German Society for Biological Psychiatry}, volume = {269}, journal = {European archives of psychiatry and clinical neuroscience : official organ of the German Society for Biological Psychiatry}, number = {3}, publisher = {Springer}, address = {Heidelberg}, issn = {0940-1334}, doi = {10.1007/s00406-017-0860-4}, pages = {295 -- 308}, year = {2018}, abstract = {The influence of Pavlovian conditioned stimuli on ongoing behavior may contribute to explaining how alcohol cues stimulate drug seeking and intake. Using a Pavlovian-instrumental transfer task, we investigated the effects of alcohol-related cues on approach behavior (i.e., instrumental response behavior) and its neural correlates, and related both to the relapse after detoxification in alcohol-dependent patients. Thirty-one recently detoxified alcohol-dependent patients and 24 healthy controls underwent instrumental training, where approach or non-approach towards initially neutral stimuli was reinforced by monetary incentives. Approach behavior was tested during extinction with either alcohol-related or neutral stimuli (as Pavlovian cues) presented in the background during functional magnetic resonance imaging (fMRI). Patients were subsequently followed up for 6 months. We observed that alcohol-related background stimuli inhibited the approach behavior in detoxified alcohol-dependent patients (t = -3.86, p < .001), but not in healthy controls (t = -0.92, p = .36). This behavioral inhibition was associated with neural activation in the nucleus accumbens (NAcc) (t((30)) = 2.06, p < .05). Interestingly, both the effects were only present in subsequent abstainers, but not relapsers and in those with mild but not severe dependence. Our data show that alcohol-related cues can acquire inhibitory behavioral features typical of aversive stimuli despite being accompanied by a stronger NAcc activation, suggesting salience attribution. The fact that these findings are restricted to abstinence and milder illness suggests that they may be potential resilience factors.}, language = {en} } @article{SekutowiczGuggenmosKuitunenPauletal.2019, author = {Sekutowicz, Maria and Guggenmos, Matthias and Kuitunen-Paul, S{\"o}ren and Garbusow, Maria and Sebold, Miriam Hannah and Pelz, Patricia and Priller, Josef and Wittchen, Hans-Ulrich and Smolka, Michael N. and Zimmermann, Ulrich S. and Heinz, Andreas and Sterzer, Philipp and Schmack, Katharina}, title = {Neural Response Patterns During Pavlovian-to-Instrumental Transfer Predict Alcohol Relapse and Young Adult Drinking}, series = {Biological psychiatry : a journal of psychiatric neuroscience and therapeutics ; a publication of the Society of Biological Psychiatry}, volume = {86}, journal = {Biological psychiatry : a journal of psychiatric neuroscience and therapeutics ; a publication of the Society of Biological Psychiatry}, number = {11}, publisher = {Elsevier}, address = {New York}, issn = {0006-3223}, doi = {10.1016/j.biopsych.2019.06.028}, pages = {857 -- 863}, year = {2019}, abstract = {BACKGROUND: Pavlovian-to-instrumental transfer (PIT) describes the influence of conditioned stimuli on instrumental behaviors and is discussed as a key process underlying substance abuse. Here, we tested whether neural responses during alcohol-related PIT predict future relapse in alcohol-dependent patients and future drinking behavior in adolescents. METHODS: Recently detoxified alcohol-dependent patients (n = 52) and young adults without dependence (n = 136) underwent functional magnetic resonance imaging during an alcohol-related PIT paradigm, and their drinking behavior was assessed in a 12-month follow-up. To predict future drinking behavior from PIT activation patterns, we used a multivoxel classification scheme based on linear support vector machines. RESULTS: When training and testing the classification scheme in patients, PIT activation patterns predicted future relapse with 71.2\% accuracy. Feature selection revealed that classification was exclusively based on activation patterns in medial prefrontal cortex. To probe the generalizability of this functional magnetic resonance imaging-based prediction of future drinking behavior, we applied the support vector machine classifier that had been trained on patients to PIT functional magnetic resonance imaging data from adolescents. An analysis of cross-classification predictions revealed that those young social drinkers who were classified as abstainers showed a greater reduction in alcohol consumption at 12-month follow-up than those classified as relapsers (Delta = -24.4 +/- 6.0 g vs. -5.7 +/- 3.6 g; p = .019). CONCLUSIONS: These results suggest that neural responses during PIT could constitute a generalized prognostic marker for future drinking behavior in established alcohol use disorder and in at-risk states.}, language = {en} }