@article{FischerKempeLeibrocketal.2010, author = {Fischer, Stephanie S. and Kempe, Daniela S. and Leibrock, Christina B. and Rexhepaj, Rexhep and Siraskar, Balasaheb and Boini, Krishna M. and Ackermann, Teresa F. and Foeller, Michael and Hocher, Berthold and Rosenblatt, Kevin P. and Kuro-o, Makoto and Lang, Florian}, title = {Hyperaldosteronism in Klotho-deficient mice}, issn = {1931-857X}, doi = {10.1152/ajprenal.00233.2010}, year = {2010}, abstract = {Klotho is a membrane protein participating in the inhibitory effect of FGF23 on the formation of 1,25- dihydroxyvitamin-D-3 [1,25(OH)(2)D-3]. It participates in the regulation of renal tubular phosphate reabsorption and stimulates renal tubular Ca2+ reabsorption. Klotho hypomorphic mice (klotho(hm)) suffer from severe growth deficit, rapid aging, and early death, events largely reversed by a vitamin D-deficient diet. The present study explored the role of Klotho deficiency in mineral and electrolyte metabolism. To this end, klothohm mice and wild-type mice (klotho(+/+)) were subjected to a normal (D+) or vitamin D-deficient (D-) diet or to a vitamin D-deficient diet for 4 wk and then to a normal diet (D-/+). At the age of 8 wk, body weight was significantly lower in klotho(hm)D(+) mice than in klotho(+/ +)D(+) mice, klotho(hm)D(-) mice, and klotho(hm)D(-/+) mice. Plasma concentrations of 1,25(OH)(2)D-3, adrenocorticotropic hormone (ACTH), antidiuretic hormone (ADH), and aldosterone were significantly higher in klotho(hm)D(+) mice than in klotho(+/+)D(+) mice. Plasma volume was significantly smaller in klotho(hm)D(-/+) mice, and plasma urea, Ca2+, phosphate and Na+, but not K+ concentrations were significantly higher in klotho(hm)D(+) mice than in klotho(+/+)D(+) mice. The differences were partially abrogated by a vitamin D-deficient diet. Moreover, the hyperaldosteronism was partially reversed by Ca2+-deficient diet. Ussing chamber experiments revealed a marked increase in amiloride-sensitive current across the colonic epithelium, pointing to enhanced epithelial sodium channel (ENaC) activity. A salt-deficient diet tended to decrease and a salt-rich diet significantly increased the life span of klotho(hm)D(+) mice. In conclusion, the present observation disclose that the excessive formation of 1,25(OH)(2)D-3 in Klotho-deficient mice results in extracellular volume depletion, which significantly contributes to the shortening of life span.}, language = {en} }