@misc{SippelMeessenCacaceetal.2017, author = {Sippel, Judith and Meeßen, Christian and Cacace, Mauro and Mechie, James and Fishwick, Stewart and Heine, Christian and Scheck-Wenderoth, Magdalena and Strecker, Manfred}, title = {The Kenya rift revisited}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {644}, issn = {1866-8372}, doi = {10.25932/publishup-41822}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418221}, pages = {45 -- 81}, year = {2017}, abstract = {We present three-dimensional (3-D) models that describe the present-day thermal and rheological state of the lithosphere of the greater Kenya rift region aiming at a better understanding of the rift evolution, with a particular focus on plume-lithosphere interactions. The key methodology applied is the 3-D integration of diverse geological and geophysical observations using gravity modelling. Accordingly, the resulting lithospheric-scale 3-D density model is consistent with (i) reviewed descriptions of lithological variations in the sedimentary and volcanic cover, (ii) known trends in crust and mantle seismic velocities as revealed by seismic and seismological data and (iii) the observed gravity field. This data-based model is the first to image a 3-D density configuration of the crystalline crust for the entire region of Kenya and northern Tanzania. An upper and a basal crustal layer are differentiated, each composed of several domains of different average densities. We interpret these domains to trace back to the Precambrian terrane amalgamation associated with the East African Orogeny and to magmatic processes during Mesozoic and Cenozoic rifting phases. In combination with seismic velocities, the densities of these crustal domains indicate compositional differences. The derived lithological trends have been used to parameterise steady-state thermal and rheological models. These models indicate that crustal and mantle temperatures decrease from the Kenya rift in the west to eastern Kenya, while the integrated strength of the lithosphere increases. Thereby, the detailed strength configuration appears strongly controlled by the complex inherited crustal structure, which may have been decisive for the onset, localisation and propagation of rifting.}, language = {en} } @misc{GholamrezaieScheckWenderothSippeletal.2018, author = {Gholamrezaie, Ershad and Scheck-Wenderoth, Magdalena and Sippel, Judith and Strecker, Manfred}, title = {Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409493}, pages = {19}, year = {2018}, abstract = {Abstract. The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.}, language = {en} } @misc{GholamrezaieScheckWenderothSippeletal.2018, author = {Gholamrezaie, Ershad and Scheck-Wenderoth, Magdalena and Sippel, Judith and Strecker, Manfred}, title = {Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean}, series = {Postprints der Universit{\"a}t Potsadm : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsadm : Mathematisch-Naturwissenschaftliche Reihe}, number = {621}, issn = {1866-8372}, doi = {10.25932/publishup-41821}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418210}, pages = {20}, year = {2018}, abstract = {The aim of this study is to investigate the shal- low thermal field differences for two differently aged pas- sive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously pub- lished 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive mar- gins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysi- cal data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condi- tion and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increas- ing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geologi- cal structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat pro- duction, sediment insulating effect, and thermal lithosphere- asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.}, language = {en} }