@article{OskinovaSunEvansetal.2013, author = {Oskinova, Lida M. and Sun, W. and Evans, C. J. and Henault-Brunet, V. and Chu, Y.-H. and Gallagher, J. S. and Guerrero, M. A. and Gruendl, R. A. and G{\"u}del, M. and Silich, S. and Chen, Y. and Naze, Y. and Hainich, Rainer and Reyes-Iturbide, J.}, title = {Discovery of x-ray emission from young suns in the small magellanic cloud}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {765}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/765/1/73}, pages = {12}, year = {2013}, abstract = {We report the discovery of extended X-ray emission within the young star cluster NGC 602a in the Wing of the Small Magellanic Cloud (SMC) based on observations obtained with the Chandra X-Ray Observatory. X-ray emission is detected from the cluster core area with the highest stellar density and from a dusty ridge surrounding the H II region. We use a census of massive stars in the cluster to demonstrate that a cluster wind or wind-blown bubble is unlikely to provide a significant contribution to the X-ray emission detected from the central area of the cluster. We therefore suggest that X-ray emission at the cluster core originates from an ensemble of low-and solar-mass pre-main-sequence (PMS) stars, each of which would be too weak in X-rays to be detected individually. We attribute the X-ray emission from the dusty ridge to the embedded tight cluster of the newborn stars known in this area from infrared studies. Assuming that the levels of X-ray activity in young stars in the low-metallicity environment of NGC 602a are comparable to their Galactic counterparts, then the detected spatial distribution, spectral properties, and level of X-ray emission are largely consistent with those expected from low-and solar-mass PMS stars and young stellar objects (YSOs). This is the first discovery of X-ray emission attributable to PMS stars and YSOs in the SMC, which suggests that the accretion and dynamo processes in young, low-mass objects in the SMC resemble those in the Galaxy.}, language = {en} }