@article{Dell'AngelaAnniyevBeyeetal.2013, author = {Dell'Angela, M. and Anniyev, Toyli and Beye, Martin and Coffee, Ryan and F{\"o}hlisch, Alexander and Gladh, J. and Katayama, T. and Kaya, S. and Krupin, O. and LaRue, J. and Mogelhoj, A. and Nordlund, D. and Norskov, J. K. and Oberg, H. and Ogasawara, H. and Ostrom, H. and Pettersson, Lars G. M. and Schlotter, W. F. and Sellberg, J. A. and Sorgenfrei, Florian and Turner, J. J. and Wolf, M. and Wurth, W. and Nilsson, A.}, title = {Real-time observation of surface bond breaking with an X-ray Laser}, series = {Science}, volume = {339}, journal = {Science}, number = {6125}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1231711}, pages = {1302 -- 1305}, year = {2013}, abstract = {We used the Linac Coherent Light Source free-electron x-ray laser to probe the electronic structure of CO molecules as their chemisorption state on Ru(0001) changes upon exciting the substrate by using a femtosecond optical laser pulse. We observed electronic structure changes that are consistent with a weakening of the CO interaction with the substrate but without notable desorption. A large fraction of the molecules (30\%) was trapped in a transient precursor state that would precede desorption. We calculated the free energy of the molecule as a function of the desorption reaction coordinate using density functional theory, including van der Waals interactions. Two distinct adsorption wells-chemisorbed and precursor state separated by an entropy barrier-explain the anomalously high prefactors often observed in desorption of molecules from metals.}, language = {en} } @article{KatayamaAnniyevBeyeetal.2013, author = {Katayama, T. and Anniyev, Toyli and Beye, Martin and Coffee, Ryan and Dell'Angela, M. and F{\"o}hlisch, Alexander and Gladh, J. and Kaya, S. and Krupin, O. and Nilsson, A. and Nordlund, D. and Schlotter, W. F. and Sellberg, J. A. and Sorgenfrei, Florian and Turner, J. J. and Wurth, W. and {\"O}str{\"o}m, H. and Ogasawara, H.}, title = {Ultrafast soft X-ray emission spectroscopy of surface adsorbates using an X-ray free electron laser}, series = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, volume = {187}, journal = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0368-2048}, doi = {10.1016/j.elspec.2013.03.006}, pages = {9 -- 14}, year = {2013}, abstract = {We report on an experimental system designed to probe chemical reactions on solid surfaces on a sub-picosecond timescale using soft X-ray emission spectroscopy at the Linac Coherent Light Source (LCLS) free electron laser (FEL) at the SLAC National Accelerator Laboratory. We analyzed the O 1s X-ray emission spectra recorded from atomic oxygen adsorbed on a Ru(0001) surface at a synchrotron beamline (SSRL, BL13-2) and an FEL beamline (LCLS, SXR). We have demonstrated conditions that provide negligible amount of FEL induced damage of the sample. In addition we show that the setup is capable of tracking the temporal evolution of electronic structure during a surface reaction of submonolayer quantities of CO molecules desorbing from the surface.}, language = {en} } @article{BeyeAnniyevCoffeeetal.2013, author = {Beye, Martin and Anniyev, Toyli and Coffee, Ryan and Dell'Angela, Martina and F{\"o}hlisch, Alexander and Gladh, J. and Katayama, T. and Kaya, S. and Krupin, O. and Mogelhoj, A. and Nilsson, A. and Nordlund, D. and Norskov, J. K. and Oberg, H. and Ogasawara, H. and Pettersson, Lars G. M. and Schlotter, W. F. and Sellberg, J. A. and Sorgenfrei, Florian and Turner, J. J. and Wolf, M. and Wurth, Wilfried and Ostrom, H.}, title = {Selective ultrafast probing of transient hot chemisorbed and precursor States of CO on Ru(0001)}, series = {Physical review letters}, volume = {110}, journal = {Physical review letters}, number = {18}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.110.186101}, pages = {6}, year = {2013}, abstract = {We have studied the femtosecond dynamics following optical laser excitation of CO adsorbed on a Ru surface by monitoring changes in the occupied and unoccupied electronic structure using ultrafast soft x-ray absorption and emission. We recently reported [M. Dell'Angela et al. Science 339, 1302 (2013)] a phonon-mediated transition into a weakly adsorbed precursor state occurring on a time scale of >2 ps prior to desorption. Here we focus on processes within the first picosecond after laser excitation and show that the metal-adsorbate coordination is initially increased due to hot-electron-driven vibrational excitations. This process is faster than, but occurs in parallel with, the transition into the precursor state. With resonant x-ray emission spectroscopy, we probe each of these states selectively and determine the respective transient populations depending on optical laser fluence. Ab initio molecular dynamics simulations of CO adsorbed on Ru(0001) were performed at 1500 and 3000 K providing insight into the desorption process.}, language = {en} } @article{OstromObergXinetal.2015, author = {Ostrom, H. and Oberg, H. and Xin, H. and Larue, J. and Beye, Martin and Gladh, J. and Ng, M. L. and Sellberg, J. A. and Kaya, S. and Mercurio, G. and Nordlund, D. and Hantschmann, Markus and Hieke, F. and Kuehn, D. and Schlotter, W. F. and Dakovski, G. L. and Turner, J. J. and Minitti, M. P. and Mitra, A. and Moeller, S. P. and F{\"o}hlisch, Alexander and Wolf, M. and Wurth, W. and Persson, Mats and Norskov, J. K. and Abild-Pedersen, Frank and Ogasawara, Hirohito and Pettersson, Lars G. M. and Nilsson, A.}, title = {Probing the transition state region in catalytic CO oxidation on Ru}, series = {Science}, volume = {347}, journal = {Science}, number = {6225}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1261747}, pages = {978 -- 982}, year = {2015}, abstract = {Femtosecond x-ray laser pulses are used to probe the carbon monoxide (CO) oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and oxygen (O) on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the OK-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC-O bond lengths close to the transition state (TS). After 1 ps, 10\% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model.}, language = {en} }