@misc{MorrisSaltRailaetal.2012, author = {Morris, Penelope J. and Salt, Carina and Raila, Jens and Brenten, Thomas and Kohn, Barbara and Schweigert, Florian J. and Zentek, J{\"u}rgen}, title = {Safety evaluation of vitamin A in growing dogs}, series = {Potsprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Potsprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {686}, doi = {10.25932/publishup-41492}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414929}, pages = {10}, year = {2012}, abstract = {The safe upper limit for inclusion of vitamin A in complete diets for growing dogs is uncertain, with the result that current recommendations range from 5.24 to 104.80 mu mol retinol (5000 to 100 000 IU vitamin A)/4184 kJ (1000 kcal) metabolisable energy (ME). The aim of the present study was to determine the effect of feeding four concentrations of vitamin A to puppies from weaning until 1 year of age. A total of forty-nine puppies, of two breeds, Labrador Retriever and Miniature Schnauzer, were randomly assigned to one of four treatment groups. Following weaning at 8 weeks of age, puppies were fed a complete food supplemented with retinyl acetate diluted in vegetable oil and fed at 1ml oil/100 g diet to achieve an intake of 5.24, 13.10, 78.60 and 104.80 mu mol retinol (5000, 12 500, 75 000 and 100 000 IU vitamin A)/4184 kJ (1000 kcal) ME. Fasted blood and urine samples were collected at 8, 10, 12, 14, 16, 20, 26, 36 and 52 weeks of age and analysed for markers of vitamin A metabolism and markers of safety including haematological and biochemical variables, bone-specific alkaline phosphatase, cross-linked carboxyterminal telopeptides of type I collagen and dual-energy X-ray absorptiometry. Clinical examinations were conducted every 4 weeks. Data were analysed by means of a mixed model analysis with Bonferroni corrections for multiple endpoints. There was no effect of vitamin A concentration on any of the parameters, with the exception of total serum retinyl esters, and no effect of dose on the number, type and duration of adverse events. We therefore propose that 104.80 mu mol retinol (100 000 IU vitamin A)/4184 kJ (1000 kcal) is a suitable safe upper limit for use in the formulation of diets designed for puppy growth.}, language = {en} } @article{RailaSchweigertKohn2011, author = {Raila, Jens and Schweigert, Florian J. and Kohn, Barbara}, title = {C-reactive protein concentrations in serum of dogs with naturally occurring renal disease}, series = {Journal of veterinary diagnostic investigation}, volume = {23}, journal = {Journal of veterinary diagnostic investigation}, number = {4}, publisher = {Sage Publ.}, address = {Thousand Oaks}, issn = {1040-6387}, doi = {10.1177/1040638711407896}, pages = {710 -- 715}, year = {2011}, abstract = {The current study was undertaken to investigate the relation between serum C-reactive protein (CRP) concentrations and parameters of renal function in dogs with naturally occurring renal disease. Dogs were assigned to groups according to plasma creatinine concentration, urinary protein-to-creatinine ratio (UP/UC), and exogenous plasma creatinine clearance (P-Cl(Cr)) rates. Group A (healthy control dogs; n = 8): non-azotemic (plasma creatinine <125 mu mol/l) and nonproteinuric (UP/UC <0.2), with P-Cl(Cr) rates >90 ml/min/m(2); group B (n = 11): non-azotemic, nonproteinuric dogs with reduced P-Cl(Cr) rates (50-89 ml/min/m(2)); group C (n = 7): azotemic, borderline proteinuric dogs (P-Cl(Cr) rates: 22-67 ml/min/m(2)); and group D (n = 6): uremic, proteinuric dogs (not tested for P-Cl(Cr)). The serum CRP concentrations were measured via commercial enzyme-linked immunosorbent assay. The CRP concentrations in the clinically healthy dogs (group A) ranged from 2.09 mg/l to 8.60 mg/l (median: 3.21 mg/l). In comparison with dogs of group A, median CRP concentrations were significantly (P < 0.01) elevated in dogs of group B (17.6 mg/l, range: 17.0-19.2 mg/l), group C (24.8 mg/l, range: 18.0-32.5 mg/l), and group D (59.7 mg/l, range: 17.7-123 mg/l). Serum CRP was significantly related to P-Cl(Cr) (r = -0.83; P < 0.001), plasma creatinine (r = 0.81; P < 0.001), UP/UC (r = 0.70; P < 0.001), and leukocytes (r = 0.49; P < 0.01). The significant relations between serum CRP concentrations and biochemical parameters of kidney function in plasma and urine suggest that a stimulation of the acute phase response is implicated in the pathogenesis of canine renal disease.}, language = {en} } @misc{PasslackSchmiedchenRailaetal.2016, author = {Paßlack, Nadine and Schmiedchen, Bettina and Raila, Jens and Schweigert, Florian J. and Stumpff, Friederike and Kohn, Barbara and Neumann, Konrad and Zentek, J{\"u}rgen}, title = {Impact of increasing dietary calcium levels on calcium excretion and vitamin D metabolites in the blood of healthy adult cats}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {542}, issn = {1866-8372}, doi = {10.25932/publishup-41130}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411302}, pages = {19}, year = {2016}, abstract = {Background Dietary calcium (Ca) concentrations might affect regulatory pathways within the Ca and vitamin D metabolism and consequently excretory mechanisms. Considering large variations in Ca concentrations of feline diets, the physiological impact on Ca homeostasis has not been evaluated to date. In the present study, diets with increasing concentrations of dicalcium phosphate were offered to ten healthy adult cats (Ca/phosphorus (P): 6.23/6.02, 7.77/7.56, 15.0/12.7, 19.0/17.3, 22.2/19.9, 24.3/21.6 g/kg dry matter). Each feeding period was divided into a 10-day adaptation and an 8-day sampling period in order to collect urine and faeces. On the last day of each feeding period, blood samples were taken. Results Urinary Ca concentrations remained unaffected, but faecal Ca concentrations increased (P < 0.001) with increasing dietary Ca levels. No effect on whole and intact parathyroid hormone levels, fibroblast growth factor 23 and calcitriol concentrations in the blood of the cats were observed. However, the calcitriol precursors 25(OH)D-2 and 25(OH)D-3, which are considered the most useful indicators for the vitamin D status, decreased with higher dietary Ca levels (P = 0.013 and P = 0.033). Increasing dietary levels of dicalcium phosphate revealed an acidifying effect on urinary fasting pH (6.02) and postprandial pH (6.01) (P < 0.001), possibly mediated by an increase of urinary phosphorus (P) concentrations (P < 0.001). Conclusions In conclusion, calcitriol precursors were linearly affected by increasing dietary Ca concentrations. The increase in faecal Ca excretion indicates that Ca homeostasis of cats is mainly regulated in the intestine and not by the kidneys. Long-term studies should investigate the physiological relevance of the acidifying effect observed when feeding diets high in Ca and P.}, language = {en} } @misc{RailaRohnSchweigertetal.2011, author = {Raila, Jens and Rohn, Sascha and Schweigert, Florian J. and Abraham, Getu}, title = {Increased antioxidant capacity in the plasma of dogs after a single oral dosage of tocotrienols}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {571}, issn = {1866-8372}, doi = {10.25932/publishup-41308}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413085}, pages = {4}, year = {2011}, abstract = {The intestinal absorption of tocotrienols (TCT) in dogs is, to our knowledge, so far unknown. Adult Beagle dogs (n 8) were administered a single oral dosage of a TCT-rich fraction (TRF; 40 mg/kg body weight) containing 32 \% a-TCT, 2 \% b-TCT, 27 \% g-TCT, 14 \% d-TCT and 25 \% a-tocopherol (a-TCP). Blood was sampled at baseline (fasted), 1, 2, 3, 4, 5, 6, 8 and 12 h after supplementation. Plasma and chylomicron concentrations of TCT and a-TCP were measured at each time point. Plasma TAG were measured enzymatically, and plasma antioxidant capacity was assessed by the Trolox equivalent antioxidant capacity assay. In fasted dogs, levels of TCT were 0·07 ( SD 0·03) mmol/l. Following the administration of the TRF, total plasma TCT peaked at 2 h (7·16 ( SD 3·88) mmol/l; P, 0·01) and remained above baseline levels (0·67 ( SD 0·44) mmol/l; P, 0·01) at 12 h. The TCT response in chylomicrons paralleled the increase in TCT in plasma with a maximum peak (3·49 ( SD 2·06) mmol/l; P, 0·01) at 2 h post-dosage. a-TCP was the major vitamin E detected in plasma and unaffected by TRF supplementation. The Trolox equivalent values increased from 2 h (776 ( SD 51·2) mmol/l) to a maximum at 12 h (1130 ( SD 7·72) mmol/l; P,0·01). The results show that TCT are detected in postprandial plasma of dogs. The increase in antioxidant capacity suggests a potential beneficial role of TCT supplementation in the prevention or treatment of several diseases in dogs.}, language = {en} } @misc{RailaSchweigertKohn2017, author = {Raila, Jens and Schweigert, Florian J. and Kohn, Barbara}, title = {C-reactive protein concentrations in serum of dogs with naturally occurring renal disease}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402942}, pages = {6}, year = {2017}, abstract = {The current study was undertaken to investigate the relation between serum C-reactive protein (CRP) concentrations and parameters of renal function in dogs with naturally occurring renal disease. Dogs were assigned to groups according to plasma creatinine concentration, urinary protein-to-creatinine ratio (UP/UC), and exogenous plasma creatinine clearance (P-Cl(Cr)) rates. Group A (healthy control dogs; n = 8): non-azotemic (plasma creatinine <125 mu mol/l) and nonproteinuric (UP/UC <0.2), with P-Cl(Cr) rates >90 ml/min/m(2); group B (n = 11): non-azotemic, nonproteinuric dogs with reduced P-Cl(Cr) rates (50-89 ml/min/m(2)); group C (n = 7): azotemic, borderline proteinuric dogs (P-Cl(Cr) rates: 22-67 ml/min/m(2)); and group D (n = 6): uremic, proteinuric dogs (not tested for P-Cl(Cr)). The serum CRP concentrations were measured via commercial enzyme-linked immunosorbent assay. The CRP concentrations in the clinically healthy dogs (group A) ranged from 2.09 mg/l to 8.60 mg/l (median: 3.21 mg/l). In comparison with dogs of group A, median CRP concentrations were significantly (P < 0.01) elevated in dogs of group B (17.6 mg/l, range: 17.0-19.2 mg/l), group C (24.8 mg/l, range: 18.0-32.5 mg/l), and group D (59.7 mg/l, range: 17.7-123 mg/l). Serum CRP was significantly related to P-Cl(Cr) (r = -0.83; P < 0.001), plasma creatinine (r = 0.81; P < 0.001), UP/UC (r = 0.70; P < 0.001), and leukocytes (r = 0.49; P < 0.01). The significant relations between serum CRP concentrations and biochemical parameters of kidney function in plasma and urine suggest that a stimulation of the acute phase response is implicated in the pathogenesis of canine renal disease.}, language = {en} }