@article{SchwarzeSprengerRiemer2020, author = {Schwarze, Thomas and Sprenger, Tobias and Riemer, Janine}, title = {1,2,3-Triazol-1,4-diyl-Fluoroionophores for Zn2+, Mg2+ and Ca2+ based on Fluorescence Intensity Enhancements in Water}, series = {ChemistrySelect}, volume = {5}, journal = {ChemistrySelect}, number = {41}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2365-6549}, doi = {10.1002/slct.202003695}, pages = {12727 -- 12735}, year = {2020}, abstract = {Herein, we represent cation-responsive fluorescent probes for the divalent cations Zn2+, Mg2+ and Ca2+, which show cation-induced fluorescence enhancements (FE) in water. The Zn2+-responsive probes Zn1, Zn2, Zn3 and Zn4 are based on o-aminoanisole-N,N-diacetic acid (AADA) derivatives and show in the presence of Zn2+ FE factors of 11.4, 13.9, 6.1 and 8.2, respectively. Most of all, Zn1 and Zn2 show higher Zn2+ induced FE than the regioisomeric triazole linked fluorescent probes Zn3 and Zn4, respectively. In this set, ZN2 is the most suitable probe to detect extracellular Zn2+ levels. For the Mg2+-responsive fluorescent probes Mg1, Mg2 and Mg3 based on o-aminophenol-N,N,O-triacetic acid (APTRA) derivatives, we also found that the regioisomeric linkage influences the fluorescence responds towards Mg2+ (Mg1+100 mM Mg2+ (FEF=13.2) and Mg3+100 mM Mg2+ (FEF=2.1)). Mg2 shows the highest Mg2+-induced FE by a factor of 25.7 and an appropriate K-d value of 3 mM to measure intracellular Mg2+ levels. Further, the Ca2+-responsive fluorescent probes Ca1 and Ca2 equipped with a 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) derivative show high Ca2+-induced FEs (Ca1 (FEF=22.1) and Ca2 (FEF=23.0)). Herein, only Ca1 (K-d=313 nM) is a suitable Ca2+ fluorescent indicator to determine intracellular Ca2+ levels.}, language = {en} } @article{SchwarzeSchneiderRiemeretal.2016, author = {Schwarze, Thomas and Schneider, Radu and Riemer, Janine and Holdt, Hans-J{\"u}rgen}, title = {A Highly K+-Selective Fluorescent Probe - Tuning the K+-Complex Stability and the K+/Na+ Selectivity by Varying the Lariat-Alkoxy Unit of a Phenylaza[18]crown-6 Ionophore}, series = {Chemistry : an Asian journal ; an ACES journal}, volume = {11}, journal = {Chemistry : an Asian journal ; an ACES journal}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1861-4728}, doi = {10.1002/asia.201500956}, pages = {241 -- 247}, year = {2016}, abstract = {A desirable goal is to synthesize easily accessible and highly K+/Na+-selective fluoroionophores to monitor physiological K+ levels in vitro and in vivo. Therefore, highly K+/Na+-selective ionophores have to be developed. Herein, we obtained in a sequence of only four synthetic steps a set of K+-responsive fluorescent probes 4, 5 and 6. In a systematic study, we investigated the influence of the alkoxy substitution in ortho position of the aniline moiety in -conjugated aniline-1,2,3-triazole-coumarin-fluoroionophores 4, 5 and 6 [R=MeO (4), EtO (5) and iPrO (6)] towards the K+-complex stability and K+/Na+ selectivity. The highest K+-complex stability showed fluoroionophore 4 with a dissociation constant K-d of 19mm, but the K-d value increases to 31mm in combined K+/Na+ solutions, indicating a poor K+/Na+ selectivity. By contrast, 6 showed even in the presence of competitive Na+ ions equal K-d values (K-d(K+)=45mm and K-d(K+/Na+)=45mm) and equal K+-induced fluorescence enhancement factors (FEFs=2.3). Thus, the fluorescent probe 6 showed an outstanding K+/Na+ selectivity and is a suitable fluorescent tool to measure physiological K+ levels in the range of 10-80mm in vitro. Further, the isopropoxy-substituted N-phenylaza[18]crown-6 ionophore in 6 is a highly K+-selective building block with a feasible synthetic route.}, language = {en} } @article{AstSchwarzeMuelleretal.2013, author = {Ast, Sandra and Schwarze, Thomas and M{\"u}ller, Holger and Sukhanov, Aleksey and Michaelis, Stefanie and Wegener, Joachim and Wolfbeis, Otto S. and K{\"o}rzd{\"o}rfer, Thomas and D{\"u}rkop, Axel and Holdt, Hans-J{\"u}rgen}, title = {A highly K+-Selective Phenylaza-[18]crown-6-Lariat-Ether-Based Fluoroionophore and its application in the sensing of K+ Ions with an optical sensor film and in cells}, series = {Chemistry - a European journal}, volume = {19}, journal = {Chemistry - a European journal}, number = {44}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201302350}, pages = {14911 -- 14917}, year = {2013}, abstract = {Herein, we report the synthesis of two phenylaza-[18]crown-6 lariat ethers with a coumarin fluorophore (1 and 2) and we reveal that compound 1 is an excellent probe for K+ ions under simulated physiological conditions. The presence of a 2-methoxyethoxy lariat group at the ortho position of the anilino moiety is crucial to the substantially increased stability of compounds 1 and 2 over their lariat-free phenylaza-[18] crown-6 ether analogues. Probe 1 shows a high K+/Na+ selectivity and a 2.5-fold fluorescence enhancement was observed in the presence of 100 mm K+ ions. A fluorescent membrane sensor, which was prepared by incorporating probe 1 into a hydrogel, showed a fully reversible response, a response time of 150 s, and a signal change of 7.8\% per 1 mm K+ within the range 1-10 mm K+. The membrane was easily fabricated (only a single sensing layer on a solid polyester support), yet no leaching was observed. Moreover, compound 1 rapidly permeated into cells, was cytocompatible, and was suitable for the fluorescent imaging of K+ ions on both the extracellular and intracellular levels.}, language = {en} } @article{SchwarzeRiemerEidneretal.2015, author = {Schwarze, Thomas and Riemer, Janine and Eidner, Sascha and Holdt, Hans-J{\"u}rgen}, title = {A Highly K+-Selective Two-Photon Fluorescent Probe}, series = {Chemistry - a European journal}, volume = {21}, journal = {Chemistry - a European journal}, number = {32}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201501473}, pages = {11306 -- 11310}, year = {2015}, abstract = {A highly K+-selective two-photon fluorescent probe for the in vitro monitoring of physiological K+ levels in the range of 1-100 mM is reported. The two-photon excited fluorescence (TPEF) probe shows a fluorescence enhancement (FE) by a factor of about three in the presence of 160 mM K+, independently of one-photon (OP, 430 nm) or two-photon (TP, 860 nm) excitation and comparable K+-induced FEs in the presence of competitive Na+ ions. The estimated dissociation constant (K-d) values in Na+-free solutions (K-d(OP)=(28 +/- 5) mM and K-d(TP)=(36 +/- 6) mM) and in combined K+/Na+ solutions (K-d(OP)=(38 +/- 8) mM and K-d(TP)=(46 +/- 25) mM) reflecting the high K+/Na+ selectivity of the fluorescent probe. The TP absorption cross-section (sigma(2PA)) of the TPEF probe+160 mMK(+) is 26 GM at 860 nm. Therefore, the TPEF probe is a suitable tool for the in vitro determination of K+.}, language = {en} } @article{SchwarzeRiemerHoldt2018, author = {Schwarze, Thomas and Riemer, Janine and Holdt, Hans-J{\"u}rgen}, title = {A Ratiometric Fluorescent Probe for K+ in Water Based on a Phenylaza-18-Crown-6 Lariat Ether}, series = {Chemistry - a European journal}, volume = {24}, journal = {Chemistry - a European journal}, number = {40}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201802306}, pages = {10116 -- 10121}, year = {2018}, abstract = {This work presents two molecular fluorescent probes 1 and 2 for the selective determination of physiologically relevant K+ levels in water based on a highly K+/Na+ selective building block, the o-(2-methoxyethoxy)phenylaza-18-crown-6 lariat ether unit. Fluorescent probe 1 showed a high K+-induced fluorescence enhancement (FE) by a factor of 7.7 of the anthracenic emission and a dissociation constant (K-d) value of 38mm in water. Further, for 2+K+, we observed a dual emission behavior at 405 and 505nm. K+ increases the fluorescence intensity of 2 at 405nm by a factor of approximately 4.6 and K+ decreases the fluorescence intensity at 505nm by a factor of about 4.8. Fluorescent probe 2+K+ exhibited a K-d value of approximately 8mm in Na+-free solutions and in combined K+/Na+ solution a similar K-d value of about 9mm was found, reflecting the high K+/Na+ selectivity of 2 in water. Therefore, 2 is a promising fluorescent tool to measure ratiometrically and selectively physiologically relevant K+ levels.}, language = {en} } @article{SchwarzeMuellerSchmidtetal.2017, author = {Schwarze, Thomas and Mueller, Holger and Schmidt, Darya and Riemer, Janine and Holdt, Hans-J{\"u}rgen}, title = {Design of Na+-Selective Fluorescent Probes: A Systematic Study of the Na+-Complex Stability and the Na+/K+ Selectivity in Acetonitrile and Water}, series = {Chemistry - a European journal}, volume = {23}, journal = {Chemistry - a European journal}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201605986}, pages = {7255 -- 7263}, year = {2017}, abstract = {There is a tremendous demand for highly Na+-selective fluoroionophores to monitor the top analyte Na+ in life science. Here, we report a systematic route to develop highly Na+/K+ selective fluorescent probes. Thus, we synthesized a set of fluoroionophores 1, 3, 4, 5, 8 and 9 (see Scheme 1) to investigate the Na+/K+ selectivity and Na(+-)complex stability in CH3CN and H2O. These Na+-probes bear different 15-crown-5 moieties to bind Na+ stronger than K+. In the set of the diethylaminocoumarin-substituted fluoroionophores 1-5, the following trend of fluorescence quenching 1 > 3 > 2 > 4 > 5 in CH3CN was observed. Therefore, the flexibility of the aza-15-crown-5 moieties in 1-4 determines the conjugation of the nitrogen lone pair with the aromatic ring. As a consequence, 1 showed in CH3CN the highest Na+-induced fluorescence enhancement (FE) by a factor of 46.5 and a weaker K+ induced FE of 3.7. The Na+-complex stability of 1-4 in CH3CN is enhanced in the following order of 2 > 4 > 3 > 1, assuming that the O-atom of the methoxy group in the ortho-position, as shown in 2, strengthened the Na+-complex formation. Furthermore, we found for the N( o-methoxyphenyl) aza-15-crown-5 substituted fluoroionophores 2, 8 and 9 in H2O, an enhanced Na+-complex stability in the following order 8 > 2 > 9 and an increased Na+/K+ selectivity in the reverse order 9 > 2 > 8. Notably, the Na+-induced FE of 8 (FEF = 10.9), 2 (FEF = 5.0) and 9 (FEF = 2.0) showed a similar trend associated with a decreased K+-induced FE [8 (FEF = 2.7) > 2 (FEF = 1.5) > 9 (FEF = 1.1)]. Here, the Na+-complex stability and Na+/K+ selectivity is also influenced by the fluorophore moiety. Thus, fluorescent probe 8 (K-d = 48 mm) allows high-contrast, sensitive, and selective Na+ measurements over extracellular K+ levels. A higher Na+/K+ selectivity showed fluorescent probe 9, but also a higher Kd value of 223 mm. Therefore, 9 is a suitable tool to measure Na+ concentrations up to 300 mm at a fluorescence emission of 614 nm.}, language = {en} } @article{Schwarze2021, author = {Schwarze, Thomas}, title = {Determination of Pd2+ by fluorescence enhancement caused by an off-switching of an energy- and an electron transfer}, series = {ChemistrySelect}, volume = {6}, journal = {ChemistrySelect}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2365-6549}, doi = {10.1002/slct.202003975}, pages = {318 -- 322}, year = {2021}, abstract = {In this paper, we introduce a fluorescent dye 1, which is able to detect selectively Pd2+ by a clear fluorescence enhancement (FE) in THF. In the presence of eight Pd2+ equivalents, we observed a fluorescence enhancement factor (FEF) of 28.3. The high Pd2+ induced FEF can be explained by an off switching of multiple quenching processes within 1 by Pd2+. In the free dye 1 a photoinduced electron transfer (PET) and energy transfer (ET) takes place and quenches the anthracenic fluorescence. The coordination of eight Pd2+ units by the alkylthio-substituted porphyrazine receptor suppresses the PET and ET quenching process and the anthracenic fluorescence is switched on.}, language = {en} } @article{SchwarzeRiemer2020, author = {Schwarze, Thomas and Riemer, Janine}, title = {Highly K+ selective probes with fluorescence emission wavelengths higher than 500 nm in water}, series = {ChemistrySelect}, volume = {5}, journal = {ChemistrySelect}, number = {42}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2365-6549}, doi = {10.1002/slct.202003785}, pages = {13174 -- 13178}, year = {2020}, abstract = {Herein, we report on the synthesis of highly K+/Na+ selective fluorescent probes in a feasible number of synthetic steps. These K+ selective fluorescent probes, so called fluoroionophores, 1 and 2 consists of different highly K+/Na+ selective building blocks the alkoxy-substituted N-phenylaza-18-crown-6 lariat ethers (ionophores) and "green" (cf. coumarin unit in 1) or "red" (cf. nile red unit in 2) fluorescent moieties (fluorophores). The fluorescent probes 1 and 2 show K+ induced fluorescence enhancement factors of 4.1 for 1 and 1.9 for 2 and dissociation constants for the corresponding K+ complexes of 43 mM (1+K+) and 18 mM (2+K+) in buffered aqueous solution. The fluorescence signal of 1 and 2 is changed by less than 5 \% by pH values in the range of 6.8 to 8.8. Thus, 1 and 2 are capable fluorescent tools to determine extracellular K+ levels by fluorescence enhancements at wavelengths higher than 500 nm.}, language = {en} } @article{SchwarzeKellingSperlichetal.2021, author = {Schwarze, Thomas and Kelling, Alexandra and Sperlich, Eric and Holdt, Hans-J{\"u}rgen}, title = {Influence of regioisomerism in 9-anthracenyl-substituted dithiodicyanoethene derivatives on photoinduced electron transfer controlled by intramolecular charge transfer}, series = {ChemPhotoChem}, volume = {5}, journal = {ChemPhotoChem}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-0932}, doi = {10.1002/cptc.202100070}, pages = {911 -- 914}, year = {2021}, abstract = {In this paper, we report on the fluorescence behaviour of three regioisomers which consist of two 9-anthracenyl fluorophores and of differently substituted dithiodicyanoethene moieties. These isomeric fluorescent probes show different quantum yields (phi(f)). In these probes, an oxidative photoinduced electron transfer (PET) from the excited 9-anthracenyl fluorophore to the dithiodicyanoethene unit quenches the fluorescence. This quenching process is accelerated by an intramolecular charge transfer (ICT) of the push-pull pi-electron system of the dithiodicyanoethene group. The acceleration of the PET depends on the strength of the ICT unit. The higher the dipole moment of the ICT unit, the stronger the observed fluorescence quenching. To the best of our knowledge, this is the first report of a regioisomeric influence on an oxidative PET by an ICT.}, language = {en} } @article{SchwarzeGarzTeuchneretal.2014, author = {Schwarze, Thomas and Garz, Andreas and Teuchner, Klaus and Menzel, Ralf and Holdt, Hans-J{\"u}rgen}, title = {Two-photon probes for metal ions based on phenylaza[18]crown-6 ethers and 1,2,3-triazoles as pi-linkers}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {15}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201402232}, pages = {2436 -- 2439}, year = {2014}, language = {en} }