@article{OkatovaAndreevaSchulzetal.1999, author = {Okatova, Olga V. and Andreeva, Katharina A. and Schulz, Burkhard and Lavrenko, Peter N.}, title = {Degradation of poly(m-phenylene oxadiazole) in concentrated sulfuric acid}, year = {1999}, language = {en} } @article{LavrenkoOkatovaSchulzetal.1999, author = {Lavrenko, Peter N. and Okatova, Olga V. and Schulz, Burkhard and Andreeva, Katharina A. and Strelina, Irina A.}, title = {Hydrodynamic and dynamo-optical properties of poly(1,3-phenylene-1,3,4-oxadiazole) molecules in sulphuric acid}, year = {1999}, abstract = {Translational diffusion of the macromolecules, intrinsic viscosity and flow birefringence induced in dilute solutions of poly(1,3-phenylene-1,3,4-oxadiazole) (PMOD) in conc. sulphuric acid has been investigated. Molecular-weight dependences of hydrodynamic and dynamo-optical properties are established over the M range from 8.1 103 to 87 103. Experimental data agree well with the theories developed for translational friction and intrinsic viscosity of the wormlike chains with the following molecular parameters: mass per chain unit ML = 22.7 Dalton/{\AA}, the Kuhn segment length A = 59 ± 4 {\AA}, the chain diameter d = 4 ± 1.5 {\AA}. Hindrance to intramolecular rotation is characterized by the parameter s = 1.7. The shear optical coefficient was found to be approximately 1.7 times lower the value of that obtained in the same solvent for the para-phenylene isomer of this polymer, being in good agreement with higher equilibrium flexibility of the PMOD molecule chains in solutions as determined herein from the hydrodynamic data.}, language = {en} } @article{ReicheFreydankHelmsetal.1999, author = {Reiche, J{\"u}rgen and Freydank, Anke-Christine and Helms, Andreas and Geue, Thomas and Schulz, Burkhard and Brehmer, Ludwig and Stiller, Burkhard and Knochenhauer, Gerald}, title = {Vacuum deposition films of oxadiazole compounds : formation and structure investigation}, year = {1999}, abstract = {The search for alternative routes of organic thin film formation is stimulated by the outstanding properties of these films in such fields as nonlinear optics, photonic data processing and molecular electronics. The formation of highly ordered multilayer structures by thermal vacuum deposition (VD) of organic compounds is an essential step toward the application of supramolecular organic architectures in technical systems. The VD of an amphiphilic substituted 2,5- diphenylene-1,3,4-oxadiazole 1 onto silicon substrates at defined temperature was used for the formation of ultrathin films. The structural data obtained for the VD-films of oxadiazole 1 by means of X-ray reflectivity, X-ray grazing incidence diffraction and atomic force microscopy (AFM) investigations indicate the formation of well ordered oxadiazole multilayers. The structure of the VD-multilayers is compared with that of Langmuir-Blodgett (LB) films and thermally treated LB-multilayers prepared from the same compound.}, language = {en} } @article{LavrenkoAndreevaStrelinaetal.1999, author = {Lavrenko, Peter N. and Andreeva, Katharina A. and Strelina, Irina A. and Garmonova, Tatjana I. and Schulz, Burkhard}, title = {Optical anisotropy and flexibility of poly(m-phenylene oxadiazole) in sulfuric acid}, year = {1999}, language = {en} } @article{OrgzallLorenzMikatetal.1999, author = {Orgzall, Ingo and Lorenz, Bernd and Mikat, J{\"u}rgen E. R. and Reck, G{\"u}nter and Knochenhauer, Gerald and Schulz, Burkhard}, title = {Phase transition in 1,3,4-oxadiazole crystals under high pressure}, year = {1999}, abstract = {Crystalline 2,5-di(4-nitrophenyl)-1,3,4-oxadiazole (DNO) has been investigated at pressures up to 5 GPa using Raman and optical spectroscopy as well as energy dispersive X-ray techniques. At ambient pressure DNO shows an orthorhombic unit cell (a = 0.5448 nm, b = 1.2758 nm, c = 1.9720 nm, density 1.513 g cm-3) with an appropriate space group Pbcn. From Raman spectroscopic investigations three phase transitions have been detected at 0.88, 1.28, and 2.2 GPa, respectively. These transitions have also been confirmed by absorption spectroscopy and X-ray measurements. Molecular modeling simulations have considerably contributed to the interpretation of the X-ray diffractograms. In general, the nearly flat structure of the oxadiazole molecule is preserved during the transitions. All subsequent structures are characterized by a stack-like arrangement of the DNO molecules. Only the mutual position of these molecular stacks changes due to the transformations so that this process may be described as a topotactical reaction. Phases II and III show a monoclinic symmetry with space group P21/c with cell parameters a = 1.990 nm, b = 0.500 nm, c = 1.240 nm, ß = 91.7°, density 1.681 g cm-3 (phase II, determined at 1. 1 GPa) and a = 1.890 nm, b = 0.510 nm, C = 1.242 nm, ß = 89.0°, density 1.733 g cm-3 (phase 111, determined at 2.0 GPa), respectively. The high-pressure phase IV stable at least up to 5 GPa shows again an orthorhombic structure with space group Pccn with corresponding cell parameters at 2.9 GPa: a = 0.465 nm, b = 1.920 nm, c = 1.230 nm and density 1.857 g cm-3 . For the first phase a blue pressure shift of the onset of absorption by about 0.032 eV GPa has been observed that may be explained by pressure influences on the electronic conjugation of the molecule. In the intermediate and high-pressure phases II-IV the onset of absorption shifts to increased wavelengths due to larger intermolecular interactions and enhanced excitation delocalization with decreasing intermolecular spacing.}, language = {en} } @article{SchuermannKochImperiaetal.1999, author = {Sch{\"u}rmann, H. and Koch, Norbert and Imperia, Paolo and Schrader, Sigurd and Jandke, M. and Strohriegl, P. and Schulz, Burkhard and Leising, G. and Brehmer, Ludwig}, title = {Ultraviolet photoelectron spectroscopic study of heterocyclic model compounds for electroluminescent devices}, year = {1999}, language = {en} } @article{BanksNishiyamaHasebeetal.2011, author = {Banks, Jo Ann and Nishiyama, Tomoaki and Hasebe, Mitsuyasu and Bowman, John L. and Gribskov, Michael and dePamphilis, Claude and Albert, Victor A. and Aono, Naoki and Aoyama, Tsuyoshi and Ambrose, Barbara A. and Ashton, Neil W. and Axtell, Michael J. and Barker, Elizabeth and Barker, Michael S. and Bennetzen, Jeffrey L. and Bonawitz, Nicholas D. and Chapple, Clint and Cheng, Chaoyang and Correa, Luiz Gustavo Guedes and Dacre, Michael and DeBarry, Jeremy and Dreyer, Ingo and Elias, Marek and Engstrom, Eric M. and Estelle, Mark and Feng, Liang and Finet, Cedric and Floyd, Sandra K. and Frommer, Wolf B. and Fujita, Tomomichi and Gramzow, Lydia and Gutensohn, Michael and Harholt, Jesper and Hattori, Mitsuru and Heyl, Alexander and Hirai, Tadayoshi and Hiwatashi, Yuji and Ishikawa, Masaki and Iwata, Mineko and Karol, Kenneth G. and Koehler, Barbara and Kolukisaoglu, Uener and Kubo, Minoru and Kurata, Tetsuya and Lalonde, Sylvie and Li, Kejie and Li, Ying and Litt, Amy and Lyons, Eric and Manning, Gerard and Maruyama, Takeshi and Michael, Todd P. and Mikami, Koji and Miyazaki, Saori and Morinaga, Shin-ichi and Murata, Takashi and M{\"u}ller-R{\"o}ber, Bernd and Nelson, David R. and Obara, Mari and Oguri, Yasuko and Olmstead, Richard G. and Onodera, Naoko and Petersen, Bent Larsen and Pils, Birgit and Prigge, Michael and Rensing, Stefan A. and Mauricio Riano-Pachon, Diego and Roberts, Alison W. and Sato, Yoshikatsu and Scheller, Henrik Vibe and Schulz, Burkhard and Schulz, Christian and Shakirov, Eugene V. and Shibagaki, Nakako and Shinohara, Naoki and Shippen, Dorothy E. and Sorensen, Iben and Sotooka, Ryo and Sugimoto, Nagisa and Sugita, Mamoru and Sumikawa, Naomi and Tanurdzic, Milos and Theissen, Guenter and Ulvskov, Peter and Wakazuki, Sachiko and Weng, Jing-Ke and Willats, William W. G. T. and Wipf, Daniel and Wolf, Paul G. and Yang, Lixing and Zimmer, Andreas D. and Zhu, Qihui and Mitros, Therese and Hellsten, Uffe and Loque, Dominique and Otillar, Robert and Salamov, Asaf and Schmutz, Jeremy and Shapiro, Harris and Lindquist, Erika and Lucas, Susan and Rokhsar, Daniel and Grigoriev, Igor V.}, title = {The selaginella genome identifies genetic changes associated with the evolution of vascular plants}, series = {Science}, volume = {332}, journal = {Science}, number = {6032}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1203810}, pages = {960 -- 963}, year = {2011}, abstract = {Vascular plants appeared similar to 410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.}, language = {en} } @article{TanneJeoungPengetal.2015, author = {Tanne, Johannes and Jeoung, Jae-Hun and Peng, Lei and Yarman, Aysu and Dietzel, Birgit and Schulz, Burkhard and Schad, Daniel and Dobbek, Holger and Wollenberger, Ursula and Bier, Frank Fabian and Scheller, Frieder W.}, title = {Direct Electron Transfer and Bioelectrocatalysis by a Hexameric, Heme Protein at Nanostructured Electrodes}, series = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, volume = {27}, journal = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1040-0397}, doi = {10.1002/elan.201500231}, pages = {2262 -- 2267}, year = {2015}, abstract = {A nanohybrid consisting of poly(3-aminobenzenesulfonic acid-co-aniline) and multiwalled carbon nanotubes [MWCNT-P(ABS-A)]) on a gold electrode was used to immobilize the hexameric tyrosine-coordinated heme protein (HTHP). The enzyme showed direct electron transfer between the heme group of the protein and the nanostructured surface. Desorption of the noncovalently bound heme from the protein could be excluded by control measurements with adsorbed hemin on aminohexanthiol-modified electrodes. The nanostructuring and the optimised charge characteristics resulted in a higher protein coverage as compared with MUA/MU modified electrodes. The adsorbed enzyme shows catalytic activity for the cathodic H2O2 reduction and oxidation of NADH.}, language = {en} } @article{MachatschekSchoeneRaschdorfetal.2019, author = {Machatschek, Rainhard Gabriel and Sch{\"o}ne, Anne-Christin and Raschdorf, Elisa and Ihlenburg, Ramona and Schulz, Burkhard and Lendlein, Andreas}, title = {Interfacial properties of morpholine-2,5-dione-based oligodepsipeptides and multiblock copolymers}, series = {MRS Communications}, volume = {9}, journal = {MRS Communications}, number = {1}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2159-6859}, doi = {10.1557/mrc.2019.21}, pages = {170 -- 180}, year = {2019}, abstract = {Oligodepsipeptides (ODPs) with alternating amide and ester bonds prepared by ring-opening polymerization of morpholine-2,5-dione derivatives are promising matrices for drug delivery systems and building blocks for multifunctional biomaterials. Here, we elucidate the behavior of three telechelic ODPs and one multiblock copolymer containing ODP blocks at the air-water interface. Surprisingly, whereas the oligomers and multiblock copolymers crystallize in bulk, no crystallization is observed at the air-water interface. Furthermore, polarization modulation infrared reflection absorption spectroscopy is used to elucidate hydrogen bonding and secondary structures in ODP monolayers. The results will direct the development of the next ODP-based biomaterial generation with tailored properties for highly sophisticated applications.}, language = {en} } @article{KarageorgievNeherSchulzetal.2005, author = {Karageorgiev, Peter and Neher, Dieter and Schulz, Burkhard and Stiller, Burkhard and Pietsch, Ullrich and Giersig, Michael and Brehmer, Ludwig}, title = {From anisotropic photo-fluidity towards nanomanipulation in the optical near-field}, issn = {1476-1122}, year = {2005}, abstract = {An increase in random molecular vibrations of a solid owing to heating above the melting point leads to a decrease in its long-range order and a loss of structural symmetry. Therefore conventional liquids are isotropic media. Here we report on a light-induced isothermal transition of a polymer film from an isotropic solid to an anisotropic liquid state in which the degree of mechanical anisotropy can be controlled by light. Whereas during irradiation by circular polarized light the film behaves as an isotropic viscoelastic fluid, it shows considerable fluidity only in the direction parallel to the light field vector under linear polarized light. The fluidization phenomenon is related to photoinduced motion of azobenzene-functionalized molecular units, which can be effectively activated only when their transition dipole moments are oriented close to the direction of the light polarization. We also describe here how the photofluidization allows nanoscopic elements of matter to be precisely manipulated}, language = {en} }