@article{SchoeneKratzSchulzetal.2016, author = {Sch{\"o}ne, Anne-Christin and Kratz, Karl and Schulz, Burkhard and Lendlein, Andreas}, title = {The relevance of hydrophobic segments in multiblock copolyesterurethanes for their enzymatic degradation at the air-water interface}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {102}, journal = {Polymer : the international journal for the science and technology of polymers}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-3861}, doi = {10.1016/j.polymer.2016.09.001}, pages = {92 -- 98}, year = {2016}, abstract = {The interplay of an enzyme with a multiblock copolymer PDLCL containing two segments of different hydrophilicity and degradability is explored in thin films at the air-water interface. The enzymatic degradation was studied in homogenous Langmuir monolayers, which are formed when containing more than 40 wt\% oligo(epsilon-caprolactone) (OCL). Enzymatic degradation rates were significantly reduced with increasing content of hydrophobic oligo(omega-pentadecalactone) (OPDL). The apparent deceleration of the enzymatic process is caused by smaller portion of water-soluble degradation fragments formed from degradable OCL fragments. Beside the film degradation, a second competing process occurs after adding lipase from Pseudomonas cepacia into the subphase, namely the enrichment of the lipase molecules in the polymeric monolayer. The incorporation of the lipase into the Langmuir film is experimentally revealed by concurrent surface area enlargement and by Brewster angle microscopy (BAM). Aside from the ability to provide information about the degradation behavior of polymers, the Langmuir monolayer degradation (LMD) approach enables to investigate polymer-enzyme interactions for non-degradable polymers. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SchoeneKratzSchulzetal.2016, author = {Sch{\"o}ne, Anne-Christin and Kratz, Karl and Schulz, Burkhard and Lendlein, Andreas}, title = {Polymer architecture versus chemical structure as adjusting tools for the enzymatic degradation of oligo(epsilon-caprolactone) based films at the air-water interface}, series = {Polymer Degradation and Stability}, volume = {131}, journal = {Polymer Degradation and Stability}, publisher = {Elsevier}, address = {Oxford}, issn = {0141-3910}, doi = {10.1016/j.polymdegradstab.2016.07.010}, pages = {114 -- 121}, year = {2016}, abstract = {The enzymatic degradation of oligo(epsilon-caprolactone) (OCL) based films at the air-water interface is investigated by Langmuir monolayer degradation (LMD) experiments to elucidate the influence of the molecular architecture and of the chemical structure on the chain scission process. For that purpose, the interactions of 2D monolayers of two star-shaped poly(epsilon-caprolactone)s (PCLs) and three linear OCL based copolyesterurethanes (P(OCL-U)) with the lipase from Pseudomonas cepacia are evaluated in comparison to linear OCL. While the architecture of star-shaped PCL Langmuir layers slightly influences their degradability compared to OCL films, significantly retarded degradations are observed for P(OCL-U) films containing urethane junction units derived from 2, 2 (4), 4-trimethyl hexamethylene diisocyanate (TMDI), hexamethylene diisocyanate (HDI) or lysine ethyl ester diisocyanate (LDI). The enzymatic degradation of the OCL based 2D structures is related to the presence of hydrophilic groups within the macromolecules rather than to the packing density of the film or to the molecular weight. The results reveal that the LMD technique allows the parallel analysis of both the film/enzyme interactions and the degradation process on the molecular level. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SarauliBorowskiPetersetal.2016, author = {Sarauli, David and Borowski, Anja and Peters, Kristina and Schulz, Burkhard and Fattakhova-Rohlfing, Dina and Leimk{\"u}hler, Silke and Lisdat, Fred}, title = {Investigation of the pH-Dependent Impact of Sulfonated Polyaniline on Bioelectrocatalytic Activity of Xanthine Dehydrogenase}, series = {ACS catalysis}, volume = {6}, journal = {ACS catalysis}, publisher = {American Chemical Society}, address = {Washington}, issn = {2155-5435}, doi = {10.1021/acscatal.6b02011}, pages = {7152 -- 7159}, year = {2016}, abstract = {We report on the pH-dependent bioelectrocatalytic activity of the redox enzyme xanthine dehydrogenase (XDH) in the presence of sulfonated polyaniline PMSA1 (poly(2-methoxyaniline-5-sulfonic acid)-co-aniline). Ultraviolet-visible (UV-vis) spectroscopic measurements with both components in solution reveal electron transfer from the hypoxanthine (HX)-reduced enzyme to the polymer. The enzyme shows bioelectrocatalytic activity on indium tin oxide (ITO) electrodes, when the polymer is present. Depending on solution pH, different processes can be identified. It can be demonstrated that not only product-based communication with the electrode but also efficient polymer-supported bioelectrocatalysis occur. Interestingly, substrate dependent catalytic currents can be obtained in acidic and neutral solutions, although the highest activity of XDH with natural reaction partners is in the alkaline region. Furthermore, operation of the enzyme electrode without addition of the natural cofactor of XDH is feasible. Finally, macroporous ITO electrodes have been used as an immobilization platform for the fabrication of HX-sensitive electrodes. The study shows that the efficient polymer/enzyme interaction can be advantageously combined with the open structure of an electrode material of controlled pore size, resulting in good processability, stability, and defined signal transfer in the presence of a substrate.}, language = {en} } @article{HamaciucBrumaKoepnicketal.2001, author = {Hamaciuc, E. and Bruma, Maria and K{\"o}pnick, Thomas and Kaminorz, Yvette and Schulz, Burkhard}, title = {Synthesis and Study of New Silicon-containing Polyoxadiazoles}, year = {2001}, abstract = {A series of new poly-1,3,4-oxadiazoles has been synthesized by polycondensation reaction of hydrazine sulfate with a mixture of a dicarboxylic acid containing unsaturated bonds and a dicarboxylic acid containing silicon, by using methanesulfonic acid/phosphorus pentoxide as a reaction medium. These polymers were highly thermostable but they were only soluble in strong inorganic acids such as sulfuric or methanesulfonic ones. An alternative way was followed by using the corresponding dihydrazides containing unsaturated bonds and the corresponding diacid chloride containing silicon that reacted in N-methylpyrrolidinone (NMP) to give soluble silicon-containing unsaturated polyhydrazides, which were cyclodehydrated either by thermal or chemical treatment to give the corresponding polyoxadiazoles. Very thin coatings of polyhydrazides and polyoxadiazoles were deposited onto silicon wafers and they showed a very smooth surface, free of pinholes, when studied by atomic force microscopy (AFM). Some polyoxadiazole films showed strong blue photoluminescence.}, language = {en} } @article{KaminorzSchulzBrehmer2000, author = {Kaminorz, Yvette and Schulz, Burkhard and Brehmer, Ludwig}, title = {Optical and Electrical Properties of Substituted 2,5-Diphenyl-1,3,4-Oxadiazoles}, year = {2000}, abstract = {New substituted 2,5-diphenyl-1,3,4-oxadiazoles are reported as luminescent materials in light emitting diodes LEDs . The investigated new oxadiazoles show efficient blue and green emission in single layer devices. The combination with a hole transporting and red emitting polythiophene led to a white emission with higher quantum efficiency (QE).}, language = {en} } @article{KarageorgievStillerPrescheretal.2000, author = {Karageorgiev, Peter and Stiller, Burkhard and Prescher, Dietrich and Dietzel, Birgit and Schulz, Burkhard and Brehmer, Ludwig}, title = {Modification of the surface potential of azobenzene-containing langmuir-blodgett films in the near field of a scanning kelvin microscope tip by irradiation}, year = {2000}, language = {en} } @article{GieblerSchulzReicheetal.1999, author = {Giebler, Rainer and Schulz, Burkhard and Reiche, J{\"u}rgen and Brehmer, Ludwig and W{\"u}hn, Mario and W{\"o}ll, Christoph and Smith, Andrew Phillip and Urquhart, Steven G. and Ade, Harald W. and Unger, Wolfgang E. S.}, title = {Near-edge x-ray absorption fine structure spectroscopy on ordered films of an amphiphilic derivate of 2,5- Diphenyl-1,3,4-oxadiazole}, year = {1999}, abstract = {The surfaces of ordered films formed from an amphiphilic derivative of 2,5-diphenyl-1,3,4-oxadiazole by the Langmuir-Blodgett (LB) technique and organic molecular beam deposition (OMBD) were investigated by the use of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. For the assignment of the spectral features of the C, N, and O K- edge absorption spectra, fingerprint spectra of poly(p-phenylene terephthalamide)(Kevlar), poly(ethylene terephthalate), poly(p-phenylene-1,3,4-oxadiazole), and 2,5-di- (pentadecyl)-1,3,4-oxadiazole, which contain related chemical moieties, were recorded. Ab initio molecular orbital calculations, performed with explicit treatment of the core hole, are used to support the spectral interpretations. Angle-resolved NEXAFS spectroscopy at the C, N, and O K-edges suggests a preferentially upright orientation of the oxadiazole derivative in the outermost layer of the films. X-ray specular reflectivity data and molecular modeling results suggest a similar interpretation.}, language = {en} } @article{BrumaSchulzKoepnicketal.1999, author = {Bruma, Maria and Schulz, Burkhard and K{\"o}pnick, Thomas and Stiller, Burkhard and Belomoina, Nataliya and Mercer, Frank W.}, title = {Synthesis and study of aromatic polyamides containing silicon and phenylquinoxaline rings in the main chain}, year = {1999}, abstract = {New poly(phenylquinoxaline-amide)s with silicon in the main chain have been prepared by polycondensation reaction of a diacid chloride, namely bis(p-chlorocarbonyl-phenyl)-diphenylsilane, with aromatic diamines containing one or two phenylquinoxaline rings separated by a flexible bridge such as ether or methylene. These polymers were easily soluble in polar aprotic solvents such as N-methylpyrrolidinone (NMP) and dimethylformamide (DMF) and showed high thermal stability with decomposition temperature being above 450°C and glass transition temperature in the range of 260- 304°C. Polymer solutions in NMP were processed into thin flexible films which exhibited very smooth surfaces, free of pinholes when studied by atomic force microscopy. The free-standing films showed a dielectric constant in the range of 3.6-3.7.}, language = {en} } @article{BrumaHamciucSchulzetal.1999, author = {Bruma, Maria and Hamciuc, Elena and Schulz, Burkhard and K{\"o}pnick, Thomas and Stiller, Burkhard and Mercer, Frank W.}, title = {Synthesis of fluorinated poly(phenylquinoxaline-amide)s and study of thin films made therefrom}, year = {1999}, abstract = {A series of five fluorinated poly(phenylquinoxaline-amide)s were synthesized by a polycondensation reaction of a diacid chloride containing the hexafluoroisopropylidene (6F) group, namely 2,2-bis(p-chlorocarbonylphenyl)- hexafluoropropane, with various aromatic diamines incorporating two phenyl-substituted quinoxaline rings. These polymers were easily soluble in polar aprotic solvents such as N-methylpyrrolione (NMP), dimethylformamide (DMF), and tetrahydrofurane (THF), and showed a high thermal stability with decomposition temperatures above 400 °C and glass transition temperatures in the range of 260-290 Tg. Polymer solutions in NMP were processed into free-standing films that showed low dielectric constant values, in the range of 3.4-3.9, and good mechanical properties, with tensile strength in the range of 40-80 MPa and elongation to break in the range of 22-55\%. Very thin films, in the range of tens of nanometer, which were deposited onto silicon wafers exhibited very smooth surfaces, free of pinholes when studied by atomic force microscopy (AFM).}, language = {en} } @article{BrumaSchulzKoepnicketal.1999, author = {Bruma, Maria and Schulz, Burkhard and K{\"o}pnick, Thomas and Stiller, Burkhard and Mercer, Frank W.}, title = {Study of thin films made from aromatic polyamides with silicon and phenylquinoxaline rings in the main chain}, year = {1999}, abstract = {Aromatic polyamides containing silicon and phenylquinoxaline rings in the main chain have been prepared by polycondensation reaction of a silicon-containing diacid chloride, namely bis(p-chlorocarbonylphenyl) -diphenylsilane, with various aromatic diamines having preformed phenylquinoxaline units. These polymers were easily soluble in polar aprotic solvents, such as N-methylpyrrolidinone (NMP) and dimethylformamide (DMF), and in tetrahydrofurane. They showed high thermal stability with decomposition temperature being above 450°C and glass transition temperature in the range of 253-304°C. Polymer solutions in NMP were processed into thin films having the thickness of tens of nanometer to 10 mm, by spin-coating onto glass plates or silicon wafers. The films had strong adhesion to substrates and exhibited very smooth surfaces, free of pinholes, in atomic force microscopy (AFM) studies. The free-standing films had dielectric constant in the range of 3.48-3.69. Thermal treatment of the films up to 350°C rendered them completely insoluble in organic solvents, while maintaining their smoothness and strong adhesion to the silicon substrate, and with no Tg in DSC experiments. Their FTIR spectra did not show any changes compared to the untreated films, meaning that polymers maintain their structural integrity at high temperature. {\´O} 1999 Elsevier Science S.A. All rights reserved.}, language = {en} } @article{OkatovaAndreevaSchulzetal.1999, author = {Okatova, Olga V. and Andreeva, Katharina A. and Schulz, Burkhard and Lavrenko, Peter N.}, title = {Degradation of poly(m-phenylene oxadiazole) in concentrated sulfuric acid}, year = {1999}, language = {en} } @article{LavrenkoOkatovaSchulzetal.1999, author = {Lavrenko, Peter N. and Okatova, Olga V. and Schulz, Burkhard and Andreeva, Katharina A. and Strelina, Irina A.}, title = {Hydrodynamic and dynamo-optical properties of poly(1,3-phenylene-1,3,4-oxadiazole) molecules in sulphuric acid}, year = {1999}, abstract = {Translational diffusion of the macromolecules, intrinsic viscosity and flow birefringence induced in dilute solutions of poly(1,3-phenylene-1,3,4-oxadiazole) (PMOD) in conc. sulphuric acid has been investigated. Molecular-weight dependences of hydrodynamic and dynamo-optical properties are established over the M range from 8.1 103 to 87 103. Experimental data agree well with the theories developed for translational friction and intrinsic viscosity of the wormlike chains with the following molecular parameters: mass per chain unit ML = 22.7 Dalton/{\AA}, the Kuhn segment length A = 59 ± 4 {\AA}, the chain diameter d = 4 ± 1.5 {\AA}. Hindrance to intramolecular rotation is characterized by the parameter s = 1.7. The shear optical coefficient was found to be approximately 1.7 times lower the value of that obtained in the same solvent for the para-phenylene isomer of this polymer, being in good agreement with higher equilibrium flexibility of the PMOD molecule chains in solutions as determined herein from the hydrodynamic data.}, language = {en} } @article{ReicheFreydankHelmsetal.1999, author = {Reiche, J{\"u}rgen and Freydank, Anke-Christine and Helms, Andreas and Geue, Thomas and Schulz, Burkhard and Brehmer, Ludwig and Stiller, Burkhard and Knochenhauer, Gerald}, title = {Vacuum deposition films of oxadiazole compounds : formation and structure investigation}, year = {1999}, abstract = {The search for alternative routes of organic thin film formation is stimulated by the outstanding properties of these films in such fields as nonlinear optics, photonic data processing and molecular electronics. The formation of highly ordered multilayer structures by thermal vacuum deposition (VD) of organic compounds is an essential step toward the application of supramolecular organic architectures in technical systems. The VD of an amphiphilic substituted 2,5- diphenylene-1,3,4-oxadiazole 1 onto silicon substrates at defined temperature was used for the formation of ultrathin films. The structural data obtained for the VD-films of oxadiazole 1 by means of X-ray reflectivity, X-ray grazing incidence diffraction and atomic force microscopy (AFM) investigations indicate the formation of well ordered oxadiazole multilayers. The structure of the VD-multilayers is compared with that of Langmuir-Blodgett (LB) films and thermally treated LB-multilayers prepared from the same compound.}, language = {en} } @article{LavrenkoAndreevaStrelinaetal.1999, author = {Lavrenko, Peter N. and Andreeva, Katharina A. and Strelina, Irina A. and Garmonova, Tatjana I. and Schulz, Burkhard}, title = {Optical anisotropy and flexibility of poly(m-phenylene oxadiazole) in sulfuric acid}, year = {1999}, language = {en} } @article{OrgzallLorenzMikatetal.1999, author = {Orgzall, Ingo and Lorenz, Bernd and Mikat, J{\"u}rgen E. R. and Reck, G{\"u}nter and Knochenhauer, Gerald and Schulz, Burkhard}, title = {Phase transition in 1,3,4-oxadiazole crystals under high pressure}, year = {1999}, abstract = {Crystalline 2,5-di(4-nitrophenyl)-1,3,4-oxadiazole (DNO) has been investigated at pressures up to 5 GPa using Raman and optical spectroscopy as well as energy dispersive X-ray techniques. At ambient pressure DNO shows an orthorhombic unit cell (a = 0.5448 nm, b = 1.2758 nm, c = 1.9720 nm, density 1.513 g cm-3) with an appropriate space group Pbcn. From Raman spectroscopic investigations three phase transitions have been detected at 0.88, 1.28, and 2.2 GPa, respectively. These transitions have also been confirmed by absorption spectroscopy and X-ray measurements. Molecular modeling simulations have considerably contributed to the interpretation of the X-ray diffractograms. In general, the nearly flat structure of the oxadiazole molecule is preserved during the transitions. All subsequent structures are characterized by a stack-like arrangement of the DNO molecules. Only the mutual position of these molecular stacks changes due to the transformations so that this process may be described as a topotactical reaction. Phases II and III show a monoclinic symmetry with space group P21/c with cell parameters a = 1.990 nm, b = 0.500 nm, c = 1.240 nm, ß = 91.7°, density 1.681 g cm-3 (phase II, determined at 1. 1 GPa) and a = 1.890 nm, b = 0.510 nm, C = 1.242 nm, ß = 89.0°, density 1.733 g cm-3 (phase 111, determined at 2.0 GPa), respectively. The high-pressure phase IV stable at least up to 5 GPa shows again an orthorhombic structure with space group Pccn with corresponding cell parameters at 2.9 GPa: a = 0.465 nm, b = 1.920 nm, c = 1.230 nm and density 1.857 g cm-3 . For the first phase a blue pressure shift of the onset of absorption by about 0.032 eV GPa has been observed that may be explained by pressure influences on the electronic conjugation of the molecule. In the intermediate and high-pressure phases II-IV the onset of absorption shifts to increased wavelengths due to larger intermolecular interactions and enhanced excitation delocalization with decreasing intermolecular spacing.}, language = {en} } @article{SchuermannKochImperiaetal.1999, author = {Sch{\"u}rmann, H. and Koch, Norbert and Imperia, Paolo and Schrader, Sigurd and Jandke, M. and Strohriegl, P. and Schulz, Burkhard and Leising, G. and Brehmer, Ludwig}, title = {Ultraviolet photoelectron spectroscopic study of heterocyclic model compounds for electroluminescent devices}, year = {1999}, language = {en} } @article{BanksNishiyamaHasebeetal.2011, author = {Banks, Jo Ann and Nishiyama, Tomoaki and Hasebe, Mitsuyasu and Bowman, John L. and Gribskov, Michael and dePamphilis, Claude and Albert, Victor A. and Aono, Naoki and Aoyama, Tsuyoshi and Ambrose, Barbara A. and Ashton, Neil W. and Axtell, Michael J. and Barker, Elizabeth and Barker, Michael S. and Bennetzen, Jeffrey L. and Bonawitz, Nicholas D. and Chapple, Clint and Cheng, Chaoyang and Correa, Luiz Gustavo Guedes and Dacre, Michael and DeBarry, Jeremy and Dreyer, Ingo and Elias, Marek and Engstrom, Eric M. and Estelle, Mark and Feng, Liang and Finet, Cedric and Floyd, Sandra K. and Frommer, Wolf B. and Fujita, Tomomichi and Gramzow, Lydia and Gutensohn, Michael and Harholt, Jesper and Hattori, Mitsuru and Heyl, Alexander and Hirai, Tadayoshi and Hiwatashi, Yuji and Ishikawa, Masaki and Iwata, Mineko and Karol, Kenneth G. and Koehler, Barbara and Kolukisaoglu, Uener and Kubo, Minoru and Kurata, Tetsuya and Lalonde, Sylvie and Li, Kejie and Li, Ying and Litt, Amy and Lyons, Eric and Manning, Gerard and Maruyama, Takeshi and Michael, Todd P. and Mikami, Koji and Miyazaki, Saori and Morinaga, Shin-ichi and Murata, Takashi and M{\"u}ller-R{\"o}ber, Bernd and Nelson, David R. and Obara, Mari and Oguri, Yasuko and Olmstead, Richard G. and Onodera, Naoko and Petersen, Bent Larsen and Pils, Birgit and Prigge, Michael and Rensing, Stefan A. and Mauricio Riano-Pachon, Diego and Roberts, Alison W. and Sato, Yoshikatsu and Scheller, Henrik Vibe and Schulz, Burkhard and Schulz, Christian and Shakirov, Eugene V. and Shibagaki, Nakako and Shinohara, Naoki and Shippen, Dorothy E. and Sorensen, Iben and Sotooka, Ryo and Sugimoto, Nagisa and Sugita, Mamoru and Sumikawa, Naomi and Tanurdzic, Milos and Theissen, Guenter and Ulvskov, Peter and Wakazuki, Sachiko and Weng, Jing-Ke and Willats, William W. G. T. and Wipf, Daniel and Wolf, Paul G. and Yang, Lixing and Zimmer, Andreas D. and Zhu, Qihui and Mitros, Therese and Hellsten, Uffe and Loque, Dominique and Otillar, Robert and Salamov, Asaf and Schmutz, Jeremy and Shapiro, Harris and Lindquist, Erika and Lucas, Susan and Rokhsar, Daniel and Grigoriev, Igor V.}, title = {The selaginella genome identifies genetic changes associated with the evolution of vascular plants}, series = {Science}, volume = {332}, journal = {Science}, number = {6032}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1203810}, pages = {960 -- 963}, year = {2011}, abstract = {Vascular plants appeared similar to 410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.}, language = {en} } @article{TanneJeoungPengetal.2015, author = {Tanne, Johannes and Jeoung, Jae-Hun and Peng, Lei and Yarman, Aysu and Dietzel, Birgit and Schulz, Burkhard and Schad, Daniel and Dobbek, Holger and Wollenberger, Ursula and Bier, Frank Fabian and Scheller, Frieder W.}, title = {Direct Electron Transfer and Bioelectrocatalysis by a Hexameric, Heme Protein at Nanostructured Electrodes}, series = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, volume = {27}, journal = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1040-0397}, doi = {10.1002/elan.201500231}, pages = {2262 -- 2267}, year = {2015}, abstract = {A nanohybrid consisting of poly(3-aminobenzenesulfonic acid-co-aniline) and multiwalled carbon nanotubes [MWCNT-P(ABS-A)]) on a gold electrode was used to immobilize the hexameric tyrosine-coordinated heme protein (HTHP). The enzyme showed direct electron transfer between the heme group of the protein and the nanostructured surface. Desorption of the noncovalently bound heme from the protein could be excluded by control measurements with adsorbed hemin on aminohexanthiol-modified electrodes. The nanostructuring and the optimised charge characteristics resulted in a higher protein coverage as compared with MUA/MU modified electrodes. The adsorbed enzyme shows catalytic activity for the cathodic H2O2 reduction and oxidation of NADH.}, language = {en} } @article{MachatschekSchoeneRaschdorfetal.2019, author = {Machatschek, Rainhard Gabriel and Sch{\"o}ne, Anne-Christin and Raschdorf, Elisa and Ihlenburg, Ramona and Schulz, Burkhard and Lendlein, Andreas}, title = {Interfacial properties of morpholine-2,5-dione-based oligodepsipeptides and multiblock copolymers}, series = {MRS Communications}, volume = {9}, journal = {MRS Communications}, number = {1}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2159-6859}, doi = {10.1557/mrc.2019.21}, pages = {170 -- 180}, year = {2019}, abstract = {Oligodepsipeptides (ODPs) with alternating amide and ester bonds prepared by ring-opening polymerization of morpholine-2,5-dione derivatives are promising matrices for drug delivery systems and building blocks for multifunctional biomaterials. Here, we elucidate the behavior of three telechelic ODPs and one multiblock copolymer containing ODP blocks at the air-water interface. Surprisingly, whereas the oligomers and multiblock copolymers crystallize in bulk, no crystallization is observed at the air-water interface. Furthermore, polarization modulation infrared reflection absorption spectroscopy is used to elucidate hydrogen bonding and secondary structures in ODP monolayers. The results will direct the development of the next ODP-based biomaterial generation with tailored properties for highly sophisticated applications.}, language = {en} } @article{KarageorgievNeherSchulzetal.2005, author = {Karageorgiev, Peter and Neher, Dieter and Schulz, Burkhard and Stiller, Burkhard and Pietsch, Ullrich and Giersig, Michael and Brehmer, Ludwig}, title = {From anisotropic photo-fluidity towards nanomanipulation in the optical near-field}, issn = {1476-1122}, year = {2005}, abstract = {An increase in random molecular vibrations of a solid owing to heating above the melting point leads to a decrease in its long-range order and a loss of structural symmetry. Therefore conventional liquids are isotropic media. Here we report on a light-induced isothermal transition of a polymer film from an isotropic solid to an anisotropic liquid state in which the degree of mechanical anisotropy can be controlled by light. Whereas during irradiation by circular polarized light the film behaves as an isotropic viscoelastic fluid, it shows considerable fluidity only in the direction parallel to the light field vector under linear polarized light. The fluidization phenomenon is related to photoinduced motion of azobenzene-functionalized molecular units, which can be effectively activated only when their transition dipole moments are oriented close to the direction of the light polarization. We also describe here how the photofluidization allows nanoscopic elements of matter to be precisely manipulated}, language = {en} }