@misc{SachseBillaultBowenetal.2012, author = {Sachse, Dirk and Billault, Isabelle and Bowen, Gabriel J. and Chikaraishi, Yoshito and Dawson, Todd E. and Feakins, Sarah J. and Freeman, Katherine H. and Magill, Clayton R. and McInerney, Francesca A. and van der Meer, Marcel T. J. and Polissar, Pratigya and Robins, Richard J. and Sachs, Julian P. and Schmidt, Hanns-Ludwig and Sessions, Alex L. and White, James W. C. and West, Jason B. and Kahmen, Ansgar}, title = {Molecular Paleohydrology interpreting the Hydrogen- Isotopic Composition of Lipid Biomarkers from Photosynthesizing Organisms}, series = {Annual review of earth and planetary sciences}, volume = {40}, journal = {Annual review of earth and planetary sciences}, number = {1}, editor = {Jeanloz, R}, publisher = {Annual Reviews}, address = {Palo Alto}, isbn = {978-0-8243-2040-9}, issn = {0084-6597}, doi = {10.1146/annurev-earth-042711-105535}, pages = {221 -- 249}, year = {2012}, abstract = {Hydrogen-isotopic abundances of lipid biomarkers are emerging as important proxies in the study of ancient environments and ecosystems. A decade ago, pioneering studies made use of new analytical methods and demonstrated that the hydrogen-isotopic composition of individual lipids from aquatic and terrestrial organisms can be related to the composition of their growth (i.e., environmental) water. Subsequently, compound-specific deuterium/hydrogen (D/H) ratios of sedimentary biomarkers have been increasingly used as paleohydrological proxies over a range of geological timescales. Isotopic fractionation observed between hydrogen in environmental water and hydrogen in lipids, however, is sensitive to biochemical, physiological, and environmental influences on the composition of hydrogen available for biosynthesis in cells. Here we review the factors and processes that are known to influence the hydrogen-isotopic compositions of lipids-especially n-alkanes-from photosynthesizing organisms, and we provide a framework for interpreting their D/H ratios from ancient sediments and identify future research opportunities.}, language = {en} }