@article{SchmaelzlinMoralejoGersondeetal.2018, author = {Schm{\"a}lzlin, Elmar Gerd and Moralejo, Benito and Gersonde, Ingo and Schleusener, Johannes and Darvin, Maxim E. and Thiede, Gisela and Roth, Martin M.}, title = {Nonscanning large-area Raman imaging for ex vivo/in vivo skin cancer discrimination}, series = {Journal of biomedical optics}, volume = {23}, journal = {Journal of biomedical optics}, number = {10}, publisher = {SPIE}, address = {Bellingham}, issn = {1083-3668}, doi = {10.1117/1.JBO.23.10.105001}, pages = {11}, year = {2018}, abstract = {Imaging Raman spectroscopy can be used to identify cancerous tissue. Traditionally, a step-by-step scanning of the sample is applied to generate a Raman image, which, however, is too slow for routine examination of patients. By transferring the technique of integral field spectroscopy (IFS) from astronomy to Raman imaging, it becomes possible to record entire Raman images quickly within a single exposure, without the need for a tedious scanning procedure. An IFS-based Raman imaging setup is presented, which is capable of measuring skin ex vivo or in vivo. It is demonstrated how Raman images of healthy and cancerous skin biopsies were recorded and analyzed. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.}, language = {en} } @article{OesterheltSchmaelzlinSchmittetal.2007, author = {Oesterhelt, Christine and Schm{\"a}lzlin, Elmar and Schmitt, J{\"u}rgen M. and Lokstein, Heiko}, title = {Regulation of photosynthesis in the unicellular acidophilic red alga Galdieria sulphuraria}, doi = {10.1111/j.1365-313X.2007.03159.x}, year = {2007}, abstract = {Extremophilic organisms are gaining increasing interest because of their unique metabolic capacities and great biotechnological potential. The unicellular acidophilic and mesothermophilic red alga Galdieria sulphuraria (074G) can grow autotrophically in light as well as heterotrophically in the dark. In this paper, the effects of externally added glucose on primary and secondary photosynthetic reactions are assessed to elucidate mixotrophic capacities of the alga. Photosynthetic O-2 evolution was quantified in an open system with a constant Supply Of CO2 to avoid rapid volatilization of dissolved inorganic carbon at low pH levels. In the presence of glucose, O-2 evolution was repressed even in illuminated cells. Ratios of variable to maximum chlorophyll fluorescence (F-v/F-m) and 77 Kfluorescence spectra indicated a reduced photochemical efficiency of photosystem II. The results were corroborated by strongly reduced levels of the photosystem 11 reaction centre protein D1. The downregulation of primary photosynthetic reactions was accompanied by reduced levels of the Calvin Cycle enzyme ribu lose-1,5-bisphosphate carboxylaselfoxygenase (Rubisco). Both effects depended on functional sugar uptake and are thus initiated by intracellular rather than extracellular glucose. Following glucose depletion, photosynthetic O-2 evolution of illuminated cells commenced after 15 h and Rubisco levels again reached the levels of autotrophic cells. It is concluded that true mixotrophy, involving electron transport across both photosystems, does not occur in G. sulphuraria 074G, and that heterotrophic growth is favoured over autotrophic growth if sufficient organic carbon is available.}, language = {en} } @misc{SchmaelzlinWalzKlimantetal.2006, author = {Schm{\"a}lzlin, Elmar and Walz, Bernd and Klimant, Ingo and Schewe, Bettina and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Monitoring hormone-induced oxygen consumption in the salivary glands of the blowfly, Calliphora vicina, by use of luminescent microbeads}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12206}, year = {2006}, abstract = {The salivary glands of the blowfly were injected with luminescent oxygen-sensitive microbeads. The changes in oxygen content within individual gland tubules during hormone-induced secretory activity were quantified. The measurements are based on an upgraded phase-modulation technique, where the phase shift of the sensor phosphorescence is determined independently from concentration and background signals. We show that the combination of a lock-in amplifier with a fluorescence microscope results in a convenient setup to measure oxygen concentrations within living animal tissues at the cellular level.}, language = {en} } @misc{LoehmannsroebenBeckHildebrandtetal.2006, author = {L{\"o}hmannsr{\"o}ben, Hans-Gerd and Beck, Michael and Hildebrandt, Niko and Schm{\"a}lzlin, Elmar and van Dongen, Joost T.}, title = {New challenges in biophotonics : laser-based fluoroimmuno analysis and in-vivo optical oxygen monitoring}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10120}, year = {2006}, abstract = {Two examples of our biophotonic research utilizing nanoparticles are presented, namely laser-based fluoroimmuno analysis and in-vivo optical oxygen monitoring. Results of the work include significantly enhanced sensitivity of a homogeneous fluorescence immunoassay and markedly improved spatial resolution of oxygen gradients in root nodules of a legume species.}, subject = {Sauerstoff}, language = {en} } @misc{EichSchmaelzlinLoehmannsroeben2013, author = {Eich, Susanne and Schm{\"a}lzlin, Elmar and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Distributed fiber optical sensing of oxygen with optical time domain reflectometry}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1085}, issn = {1866-8372}, doi = {10.25932/publishup-47665}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476659}, pages = {16}, year = {2013}, abstract = {In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements.}, language = {en} } @article{OliverLunnUrbanczykWochniaketal.2008, author = {Oliver, Sandra N. and Lunn, John Edward and Urbanczyk-Wochniak, Ewa and Lytovchenko, Anna and van Dongen, Joost T. and Faix, Benjamin and Schm{\"a}lzlin, Elmar and Fernie, Alisdair R. and Schm{\"a}elzlin, E. and Geigenberger, Peter}, title = {Decreased expression of cytosolic pyruvate kinase in potato tubers leads to a decline in pyruvate resulting in an in vivo repression of the alternative oxidase}, doi = {10.1104/pp.108.126516}, year = {2008}, abstract = {The aim of this work was to investigate the effect of decreased cytosolic pyruvate kinase (PKc) on potato (Solanum tuberosum) tuber metabolism. Transgenic potato plants with strongly reduced levels of PKc were generated by RNA interference gene silencing under the control of a tuber-specific promoter. Metabolite profiling showed that decreased PKc activity led to a decrease in the levels of pyruvate and some other organic acids involved in the tricarboxylic acid cycle. Flux analysis showed that this was accompanied by changes in carbon partitioning, with carbon flux being diverted from glycolysis toward starch synthesis. However, this metabolic shift was relatively small and hence did not result in enhanced starch levels in the tubers. Although total respiration rates and the ATP to ADP ratio were largely unchanged, transgenic tubers showed a strong decrease in the levels of alternative oxidase (AOX) protein and a corresponding decrease in the capacity of the alternative pathway of respiration. External feeding of pyruvate to tuber tissue or isolated mitochondria resulted in activation of the AOX pathway, both in the wild type and the PKc transgenic lines, providing direct evidence for the regulation of AOX by changes in pyruvate levels. Overall, these results provide evidence for a crucial role of PKc in the regulation of pyruvate levels as well as the level of the AOX in heterotrophic plant tissue, and furthermore reveal that these parameters are interlinked in vivo.}, language = {en} } @article{EichSchmaelzlinLoehmannsroeben2013, author = {Eich, Susanne and Schm{\"a}lzlin, Elmar and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Distributed fiber optical sensing of Oxygen with optical time domain reflectometry}, series = {Sensors}, volume = {13}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s130607170}, pages = {7170 -- 7183}, year = {2013}, abstract = {In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements.}, language = {en} } @article{ZabalzavanDongenFroehlichetal.2009, author = {Zabalza, Ana and van Dongen, Joost T. and Fr{\"o}hlich, Anja and Oliver, Sandra N. and Faix, Benjamin and Gupta, Kapuganti Jagadis and Schmalzlin, Elmar and Igal, Maria and Orcaray, Luis and Royuela, Mercedes and Geigenberger, Peter}, title = {Regulation of respiration and fermentation to control the plant internal oxygen concentration}, issn = {0032-0889}, doi = {10.1104/pp.108.129288}, year = {2009}, abstract = {Plant internal oxygen concentrations can drop well below ambient even when the plant grows under optimal conditions. Using pea (Pisum sativum) roots, we show how amenable respiration adapts to hypoxia to save oxygen when the oxygen availability decreases. The data cannot simply be explained by oxygen being limiting as substrate but indicate the existence of a regulatory mechanism, because the oxygen concentration at which the adaptive response is initiated is independent of the actual respiratory rate. Two phases can be discerned during the adaptive reaction: an initial linear decline of respiration is followed by a nonlinear inhibition in which the respiratory rate decreased progressively faster upon decreasing oxygen availability. In contrast to the cytochrome c pathway, the inhibition of the alternative oxidase pathway shows only the linear component of the adaptive response. Feeding pyruvate to the roots led to an increase of the oxygen consumption rate, which ultimately led to anoxia. The importance of balancing the in vivo pyruvate availability in the tissue was further investigated. Using various alcohol dehydrogenase knockout lines of Arabidopsis (Arabidopsis thaliana), it was shown that even under aerobic conditions, alcohol fermentation plays an important role in the control of the level of pyruvate in the tissue. Interestingly, alcohol fermentation appeared to be primarily induced by a drop in the energy status of the tissue rather than by a low oxygen concentration, indicating that sensing the energy status is an important component of optimizing plant metabolism to changes in the oxygen availability.}, language = {en} } @misc{AstSchmaelzlinLoehmannsroebenetal.2012, author = {Ast, Cindy and Schm{\"a}lzlin, Elmar and L{\"o}hmannsr{\"o}ben, Hans-Gerd and van Dongen, Joost T.}, title = {Optical oxygen micro- and nanosensors for plant applications}, series = {Sensors}, volume = {12}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s120607015}, pages = {7015 -- 7032}, year = {2012}, abstract = {Pioneered by Clark's microelectrode more than half a century ago, there has been substantial interest in developing new, miniaturized optical methods to detect molecular oxygen inside cells. While extensively used for animal tissue measurements, applications of intracellular optical oxygen biosensors are still scarce in plant science. A critical aspect is the strong autofluorescence of the green plant tissue that interferes with optical signals of commonly used oxygen probes. A recently developed dual-frequency phase modulation technique can overcome this limitation, offering new perspectives for plant research. This review gives an overview on the latest optical sensing techniques and methods based on phosphorescence quenching in diverse tissues and discusses the potential pitfalls for applications in plants. The most promising oxygen sensitive probes are reviewed plus different oxygen sensing structures ranging from micro-optodes to soluble nanoparticles. Moreover, the applicability of using heterologously expressed oxygen binding proteins and fluorescent proteins to determine changes in the cellular oxygen concentration are discussed as potential non-invasive cellular oxygen reporters.}, language = {en} } @misc{SchmaelzlinDongenKlimantetal.2005, author = {Schm{\"a}lzlin, Elmar and Dongen, Joost T. van and Klimant, Ingo and Marmod{\´e}e, Bettina and Steup, Martin and Fishahn, Joachim and Geigenberger, Peter and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {An optical multifrequency phase-modulation method using microbeads for measuring intracellular oxygen concentrations in plants}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12232}, year = {2005}, abstract = {A technique has been developed to measure absolute intracellular oxygen concentrations in green plants. Oxygen-sensitive phosphorescent microbeads were injected into the cells and an optical multifrequency phase-modulation technique was used to discriminate the sensor signal from the strong autofluorescence of the plant tissue. The method was established using photosynthesis-competent cells of the giant algae Chara corallina L., and was validated by application to various cell types of other plant species.}, language = {en} }