@article{SchleussnerFrielerMeinshausenetal.2011, author = {Schleussner, Carl-Friedrich and Frieler, Katja and Meinshausen, Malte and Yin, J. and Levermann, Anders}, title = {Emulating Atlantic overturning strength for low emission scenarios consequences for sea-level rise along the North American east coast}, series = {Earth system dynamics}, volume = {2}, journal = {Earth system dynamics}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2190-4979}, doi = {10.5194/esd-2-191-2011}, pages = {191 -- 200}, year = {2011}, abstract = {In order to provide probabilistic projections of the future evolution of the Atlantic Meridional Overturning Circulation (AMOC), we calibrated a simple Stommel-type box model to emulate the output of fully coupled three-dimensional atmosphere-ocean general circulation models (AOGCMs) of the Coupled Model Intercomparison Project (CMIP). Based on this calibration to idealised global warming scenarios with and without interactive atmosphere-ocean fluxes and freshwater perturbation simulations, we project the future evolution of the AMOC mean strength within the covered calibration range for the lower two Representative Concentration Pathways (RCPs) until 2100 obtained from the reduced complexity carbon cycle-climate model MAGICC 6. For RCP3-PD with a global mean temperature median below 1.0 degrees C warming relative to the year 2000, we project an ensemble median weakening of up to 11\% compared to 22\% under RCP4.5 with a warming median up to 1.9 degrees C over the 21st century. Additional Greenland meltwater of 10 and 20 cm of global sea-level rise equivalent further weakens the AMOC by about 4.5 and 10 \%, respectively. By combining our outcome with a multi-model sea-level rise study we project a dynamic sea-level rise along the New York City coastline of 4 cm for the RCP3-PD and of 8 cm for the RCP4.5 scenario over the 21st century. We estimate the total steric and dynamic sea-level rise for New York City to be about 24 cm until 2100 for the RCP3-PD scenario, which can hold as a lower bound for sea-level rise projections in this region, as it does not include ice sheet and mountain glacier contributions.}, language = {en} } @article{SchleussnerLissnerFischeretal.2016, author = {Schleussner, Carl-Friedrich and Lissner, Tabea K. and Fischer, Erich M. and Wohland, Jan and Perrette, Mahe and Golly, Antonius and Rogelj, Joeri and Childers, Katelin and Schewe, Jacob and Frieler, Katja and Mengel, Matthias and Hare, William and Schaeffer, Michiel}, title = {Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 degrees C and 2 degrees C}, series = {Earth system dynamics}, volume = {7}, journal = {Earth system dynamics}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2190-4979}, doi = {10.5194/esd-7-327-2016}, pages = {327 -- 351}, year = {2016}, abstract = {Robust appraisals of climate impacts at different levels of global-mean temperature increase are vital to guide assessments of dangerous anthropogenic interference with the climate system. The 2015 Paris Agreement includes a two-headed temperature goal: "holding the increase in the global average temperature to well below 2 degrees C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 degrees C". Despite the prominence of these two temperature limits, a comprehensive overview of the differences in climate impacts at these levels is still missing. Here we provide an assessment of key impacts of climate change at warming levels of 1.5 degrees C and 2 degrees C, including extreme weather events, water availability, agricultural yields, sea-level rise and risk of coral reef loss. Our results reveal substantial differences in impacts between a 1.5 degrees C and 2 degrees C warming that are highly relevant for the assessment of dangerous anthropogenic interference with the climate system. For heat-related extremes, the additional 0.5 degrees C increase in global-mean temperature marks the difference between events at the upper limit of present-day natural variability and a new climate regime, particularly in tropical regions. Similarly, this warming difference is likely to be decisive for the future of tropical coral reefs. In a scenario with an end-of-century warming of 2 degrees C, virtually all tropical coral reefs are projected to be at risk of severe degradation due to temperature-induced bleaching from 2050 onwards. This fraction is reduced to about 90\% in 2050 and projected to decline to 70\% by 2100 for a 1.5 degrees C scenario. Analyses of precipitation-related impacts reveal distinct regional differences and hot-spots of change emerge. Regional reduction in median water availability for the Mediterranean is found to nearly double from 9\% to 17\% between 1.5 degrees C and 2 degrees C, and the projected lengthening of regional dry spells increases from 7 to 11\%. Projections for agricultural yields differ between crop types as well as world regions. While some (in particular high-latitude) regions may benefit, tropical regions like West Africa, South-East Asia, as well as Central and northern South America are projected to face substantial local yield reductions, particularly for wheat and maize. Best estimate sea-level rise projections based on two illustrative scenarios indicate a 50cm rise by 2100 relative to year 2000-levels for a 2 degrees C scenario, and about 10 cm lower levels for a 1.5 degrees C scenario. In a 1.5 degrees C scenario, the rate of sea-level rise in 2100 would be reduced by about 30\% compared to a 2 degrees C scenario. Our findings highlight the importance of regional differentiation to assess both future climate risks and different vulnerabilities to incremental increases in global-mean temperature. The article provides a consistent and comprehensive assessment of existing projections and a good basis for future work on refining our understanding of the difference between impacts at 1.5 degrees C and 2 degrees C warming.}, language = {en} } @misc{SchleussnerLissnerFischeretal.2016, author = {Schleussner, Carl-Friedrich and Lissner, Tabea Katharina and Fischer, Erich M. and Wohland, Jan and Perrette, Mah{\´e} and Golly, Antonius and Rogelj, Joeri and Childers, Katelin and Schewe, Jacob and Frieler, Katja and Mengel, Matthias and Hare, William and Schaeffer, Michiel}, title = {Differential climate impacts for policy-relevant limits to global warming}, series = {Earth System Dynamics}, journal = {Earth System Dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410258}, pages = {25}, year = {2016}, abstract = {Robust appraisals of climate impacts at different levels of global-mean temperature increase are vital to guide assessments of dangerous anthropogenic interference with the climate system. The 2015 Paris Agreement includes a two-headed temperature goal: "holding the increase in the global average temperature to well below 2 degrees C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 degrees C". Despite the prominence of these two temperature limits, a comprehensive overview of the differences in climate impacts at these levels is still missing. Here we provide an assessment of key impacts of climate change at warming levels of 1.5 degrees C and 2 degrees C, including extreme weather events, water availability, agricultural yields, sea-level rise and risk of coral reef loss. Our results reveal substantial differences in impacts between a 1.5 degrees C and 2 degrees C warming that are highly relevant for the assessment of dangerous anthropogenic interference with the climate system. For heat-related extremes, the additional 0.5 degrees C increase in global-mean temperature marks the difference between events at the upper limit of present-day natural variability and a new climate regime, particularly in tropical regions. Similarly, this warming difference is likely to be decisive for the future of tropical coral reefs. In a scenario with an end-of-century warming of 2 degrees C, virtually all tropical coral reefs are projected to be at risk of severe degradation due to temperature-induced bleaching from 2050 onwards. This fraction is reduced to about 90\% in 2050 and projected to decline to 70\% by 2100 for a 1.5 degrees C scenario. Analyses of precipitation-related impacts reveal distinct regional differences and hot-spots of change emerge. Regional reduction in median water availability for the Mediterranean is found to nearly double from 9\% to 17\% between 1.5 degrees C and 2 degrees C, and the projected lengthening of regional dry spells increases from 7 to 11\%. Projections for agricultural yields differ between crop types as well as world regions. While some (in particular high-latitude) regions may benefit, tropical regions like West Africa, South-East Asia, as well as Central and northern South America are projected to face substantial local yield reductions, particularly for wheat and maize. Best estimate sea-level rise projections based on two illustrative scenarios indicate a 50cm rise by 2100 relative to year 2000-levels for a 2 degrees C scenario, and about 10 cm lower levels for a 1.5 degrees C scenario. In a 1.5 degrees C scenario, the rate of sea-level rise in 2100 would be reduced by about 30\% compared to a 2 degrees C scenario. Our findings highlight the importance of regional differentiation to assess both future climate risks and different vulnerabilities to incremental increases in global-mean temperature. The article provides a consistent and comprehensive assessment of existing projections and a good basis for future work on refining our understanding of the difference between impacts at 1.5 degrees C and 2 degrees C warming.}, language = {en} } @article{SchleussnerRogeljSchaefferetal.2016, author = {Schleussner, Carl-Friedrich and Rogelj, Joeri and Schaeffer, Michiel and Lissner, Tabea and Licker, Rachel and Fischer, Erich M. and Knutti, Reto and Levermann, Anders and Frieler, Katja and Hare, William}, title = {Science and policy characteristics of the Paris Agreement temperature goal}, series = {Nature climate change}, volume = {6}, journal = {Nature climate change}, publisher = {Nature Publ. Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/NCLIMATE3096}, pages = {827 -- 835}, year = {2016}, language = {en} }