@article{NexerAuthemayouSchildgenetal.2015, author = {Nexer, Maelle and Authemayou, Christine and Schildgen, Taylor F. and Hantoro, Wahyoe S. and Molliex, Stephane and Delcaillau, Bernard and Pedoja, Kevin and Husson, Laurent and Regard, Vincent}, title = {Evaluation of morphometric proxies for uplift on sequences of coral reef terraces: A case study from Sumba Island (Indonesia)}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {241}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2015.03.036}, pages = {145 -- 159}, year = {2015}, abstract = {Sequences of coral reef terraces characterized by staircase morphologies and a homogeneous lithology make them appropriate to isolate the influence of uplift on drainage morphology. Along the northern coast of Sumba Island, Indonesia, we investigated the correlations between landscape morphology and uplift rates, which range from 0.02 to 0.6 mm.yr(-1). We studied eight morphometric indices at two scales: whole island (similar to 11,000 km(2)) and within sequences of reefal terraces (similar to 3000 km(2)). At the latter scale, we extracted morphometric indices for 15 individual catchments draining mostly the reefal terraces and for 30 areas undergoing specific ranges of uplift rates draining only the reefal terraces. Indices extracted from digital elevation models include residual relief, incision, stream gradient indices (SL and k(sn)), the hypsometric integral, drainage area, mean relief, and the shape factor. We find that SL, the hypsometric integral, mean relief and the shape factor of catchments positively correlate with uplift rates, whereas incision, residual relief, and k(sn) do not. More precisely, we find that only the areas that are uplifting at a rate faster than 03 mm.yr(-1) can yield the extreme values for these indices, implying that these extreme values are indicative of fast uplifting areas. However, the relationship is not bivalent because any uplift rate can be associated with low values of the same indices. For all indices, the transient conditions of the drainage influence the correlation with Pleistocene mean uplift rates, illustrating the necessity to extract morphometric indices with an appropriate choice of catchment scale. This type of analysis helps to identify the morphometric indices that are most useful for tectonic analysis in areas of unknown uplift, allowing for easy identification of short spatial variations of uplift rate and detection of areas with relatively fast uplift rates in unstudied coastal zones. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{BallatoLandgrafSchildgenetal.2015, author = {Ballato, Paolo and Landgraf, Angela and Schildgen, Taylor F. and Stockli, Daniel F. and Fox, Matthew and Ghassemi, Mohammad R. and Kirby, Eric and Strecker, Manfred}, title = {The growth of a mountain belt forced by base-level fall: Tectonics and surface processes during the evolution of the Alborz Mountains, N Iran}, series = {Earth \& planetary science letters}, volume = {425}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2015.05.051}, pages = {204 -- 218}, year = {2015}, abstract = {The idea that climatically modulated erosion may impact orogenic processes has challenged geoscientists for decades. Although modeling studies and physical calculations have provided a solid theoretical basis supporting this interaction, to date, field-based work has produced inconclusive results. The central-western Alborz Mountains in the northern sectors of the Arabia-Eurasia collision zone constitute a promising area to explore these potential feedbacks. This region is characterized by asymmetric precipitation superimposed on an orogen with a history of spatiotemporal changes in exhumation rates, deformation patterns, and prolonged, km-scale base-level changes. Our analysis suggests that despite the existence of a strong climatic gradient at least since 17.5 Ma, the early orogenic evolution (from similar to 36 to 9-6 Ma) was characterized by decoupled orographic precipitation and tectonics. In particular, faster exhumation and sedimentation along the more arid southern orogenic flank point to a north-directed accretionary flux and underthrusting of Central Iran. Conversely, from 6 to 3 Ma, erosion rates along the northern orogenic flank became higher than those in the south, where they dropped to minimum values. This change occurred during a similar to 3-Myr-long, km-scale base-level lowering event in the Caspian Sea. We speculate that mass redistribution processes along the northern flank of the Alborz and presumably across all mountain belts adjacent to the South Caspian Basin and more stable areas of the Eurasian plate increased the sediment load in the basin and ultimately led to the underthrusting of the Caspian Basin beneath the Alborz Mountains. This underthrusting in turn triggered a new phase of northward orogenic expansion, transformed the wetter northern flank into a new pro-wedge, and led to the establishment of apparent steady-state conditions along the northern orogenic flank (i.e., rock uplift equal to erosion rates). Conversely, the southern mountain front became the retro-wedge and experienced limited tectonic activity. These observations overall raise the possibility that mass-distribution processes during a pronounced erosion phase driven by base-level changes may have contributed to the inferred regional plate-tectonic reorganization of the northern Arabia-Eurasia collision during the last similar to 5 Ma. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{AcostaSchildgenClarkeetal.2015, author = {Acosta, Veronica Torres and Schildgen, Taylor F. and Clarke, Brian A. and Scherler, Dirk and Bookhagen, Bodo and Wittmann, Hella and von Blanckenburg, Friedhelm and Strecker, Manfred}, title = {Effect of vegetation cover on millennial-scale landscape denudation rates in East Africa}, series = {Lithosphere}, volume = {7}, journal = {Lithosphere}, number = {4}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {1941-8264}, doi = {10.1130/L402.1}, pages = {408 -- 420}, year = {2015}, abstract = {The mechanisms by which climate and vegetation affect erosion rates over various time scales lie at the heart of understanding landscape response to climate change. Plot-scale field experiments show that increased vegetation cover slows erosion, implying that faster erosion should occur under low to moderate vegetation cover. However, demonstrating this concept over long time scales and across landscapes has proven to be difficult, especially in settings complicated by tectonic forcing and variable slopes. We investigate this problem by measuring cosmogenic Be-10-derived catchment-mean denudation rates across a range of climate zones and hillslope gradients in the Kenya Rift, and by comparing our results with those published from the Rwenzori Mountains of Uganda. We find that denudation rates from sparsely vegetated parts of the Kenya Rift are up to 0.13 mm/yr, while those from humid and more densely vegetated parts of the Kenya Rift flanks and the Rwenzori Mountains reach a maximum of 0.08 mm/yr, despite higher median hillslope gradients. While differences in lithology and recent land-use changes likely affect the denudation rates and vegetation cover values in some of our studied catchments, hillslope gradient and vegetation cover appear to explain most of the variation in denudation rates across the study area. Our results support the idea that changing vegetation cover can contribute to complex erosional responses to climate or land-use change and that vegetation cover can play an important role in determining the steady-state slopes of mountain belts through its stabilizing effects on the land surface.}, language = {en} }