@article{CosentinoBuchwaldtSampalmierietal.2013, author = {Cosentino, Domenico and Buchwaldt, Robert and Sampalmieri, Gianluca and Iadanza, Annalisa and Cipollari, Paola and Schildgen, Taylor F. and Hinnov, Linda A. and Ramezani, Jahandar and Bowring, Samuel A.}, title = {Refining the mediterranean "Messinian gap" with high-precision U-Pb zircon geochronology, central and northern Italy}, series = {Geology}, volume = {41}, journal = {Geology}, number = {3}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G33820.1}, pages = {323 -- 326}, year = {2013}, abstract = {Astronomically tuned cyclic sedimentary successions provide unprecedented insight into the temporal evolution of depositional systems and major geologic events. However, placing astronomically calibrated records into an absolute time frame with confidence requires independent and precise geochronologic constraints. Astronomical tuning of the precessionally modulated sedimentary cycles of the Mediterranean Basin deposited during the Messinian Salinity Crisis (5.96-5.33 Ma) has indicated an similar to 90 k.y. "Messinian gap", corresponding to the evaporative drawdown of the Mediterranean following the closure of the Mediterranean-Atlantic gateway. In the Messinian deposits, a volcanic ash dated by Ar-40/Ar-39 geochronology was used to anchor the sedimentary cycles to the insolation curve. However, the uncertainty of the Ar-40/Ar-39 date introduces a potential two-cycle (similar to 40 k.y.) uncertainty in the tuning. Using high-precision chemical abrasion-thermal ionization mass spectrometry (CA-TIMS) U-Pb geochronology on single zircon grains from two Messinian ash layers in Italy, we obtained dates of 5.5320 +/- 0.0046 Ma and 5.5320 +/- 0.0074 Ma with sub-precessional resolution. Combined with our astronomical tuning of the Messinian Lower Evaporites, the results refine the duration of the "Messinian gap" to at most 28 or 58 +/- 9.6 k.y., which correlates with either the TG12 glacial interval alone, or both TG12 and TG14 glacial intervals, supporting the hypothesis of a glacio-eustatic contribution in fully isolating the Mediterranean from the Atlantic Ocean. Our new U-Pb dates also allow us to infer a precessionally modulated cyclicity for the post-evaporitic deposits, and hence enable us to tune those successions to the insolation curve.}, language = {en} } @article{CosentinoSchildgenCipollarietal.2012, author = {Cosentino, Domenico and Schildgen, Taylor F. and Cipollari, Paola and Faranda, Costanza and Gliozzi, Elsa and Hudackova, Natalia and Lucifora, Stella and Strecker, Manfred}, title = {Late Miocene surface uplift of the southern margin of the Central Anatolian Plateau, Central Taurides, Turkey}, series = {Geological Society of America bulletin}, volume = {124}, journal = {Geological Society of America bulletin}, number = {1-2}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0016-7606}, doi = {10.1130/B30466.1}, pages = {133 -- 145}, year = {2012}, abstract = {The timing and pattern of surface uplift of Miocene marine sediments capping the southern margin of the Central Anatolian Plateau in southern Turkey provide a first-order constraint on possible mechanisms of regional uplift. Nannofossil, ostracod, and planktic foraminifera biostratigraphy of the Basyayla section (Mut-Ermenek Basin) within the Mut and Kfiselerli Formations suggests a Tortonian age for marine sediments unconformably capping basement rocks at 2 km elevation. The identification of biozone MMi 12a (7.81-8.35 Ma) from planktic foraminifera in the upper part of the section provides the tightest constraint on the age, which is further limited to 8.35-8.108 Ma as a result of the reverse polarity of the collected samples (chron 4r.1 r or 4r.2r). This provides a limiting age for the onset of surface uplift at the margin of one of the world's major orogenic plateaus, from which an average uplift rate of 0.24-0.25 mm/yr can be calculated. Subhorizontal beds of the uppermost marine sediments exposed throughout the Mut-Ermenek Basin suggest minimal localized deformation, with just minor faulting at the basin margin and broad antiformal deformation across the basin. This implies that the post-8 Ma uplift mechanism must be rooted deep within the crust or in the upper mantle. Published Pn-wave velocity data for the region are compatible with topography compensated by asthenosphere across the southern margin of the plateau, showing a close match to the highest topography when elevations are filtered with a 100-km-wide smoothing window. Uplift along the southern margin of the Central Anatolian Plateau is also reflected by the pattern of Miocene marine sediments capping the margin, which form an asymmetric drape fold over the topography. These observations, together with tomographic evidence for slab steepening and break-off beneath the Eastern Anatolian Plateau, suggest that at least some of the 2 km of post-8 Ma uplift of the southern Central Anatolian Plateau margin is compensated by low-density asthenospheric mantle that upwelled following slab break-off.}, language = {en} } @article{RadaeffCosentinoCipollarietal.2016, author = {Radaeff, Giuditta and Cosentino, Domenico and Cipollari, Paola and Schildgen, Taylor F. and Iadanza, Annalisa and Strecker, Manfred and Darbas, Guldemin and G{\"u}rb{\"u}z, Kemal}, title = {Stratigraphic architecture of the upper Messinian deposits of the Adana Basin (southern Turkey): implications for the Messinian Salinity Crisis and the Taurus petroleum system}, series = {Italian journal of geosciences : bollettino della Societ{\~A}  Geologica Italiana e del Servizio Geologico d'Italia}, volume = {135}, journal = {Italian journal of geosciences : bollettino della Societ{\~A}  Geologica Italiana e del Servizio Geologico d'Italia}, publisher = {Societ{\~A}  Geologica Italiana}, address = {Roma}, issn = {2038-1719}, doi = {10.3301/IJG.2015.18}, pages = {408 -- 424}, year = {2016}, abstract = {This paper is mainly based on field work carried out on the Messinian deposits of the Adana Basin ( southern Turkey), as well as on the interpretation of seismic reflection profiles to understand 3D geometries of the basin fill. Chronostratigraphic constraints for the Messinian deposits are from micropaleontological studies on foraminifera, ostracods, and calcareous nannofossils, recently carried out on the Messinian deposits of the Adana Basin. Our results indicate that this basin developed in a marginal area strictly related to the Mediterranean realm. The Messinian deposits of the Adana Basin record all the main steps of the Messinian Salinity Crisis ( MSC) that affected the Mediterranean area at the end of the Miocene. The new stratigraphic model for the Messinian deposits of the Adana Basin provided in this work gives new insights into both the MSC and the Taurus petroleum system. Despite their complete correspondence with the MSC, the Messinian deposits of the Adana Basin show some differences with respect to the current conceptual model for the MSC. For example, in the current conceptual model for the MSC, only one regional erosional surface ( MES) characterizes the MSC deposits. In the Adana Basin, two regional erosional surfaces, named MES1 and MES2, separate the Messinian deposits related to the MSC in Lower Evaporites, Resedimented Lower Evaporites ( RLE), and upper Messinian continental deposits containing a late Lago-Mare ostracod assemblage ( mainly fluvial coarse-grained and fine-grained sediments). In some places, Brecciated Limestones lie just above the MES1 and beneath the RLE. In addition, the RLE are thought to be related to the same step that brought to the Messinian halite deposition throughout the Mediterranean, pointing to a hyperhaline environment. In contrast, the fine-grained deposits of the RLE of the Adana Basin show the occurrence of Parathetyan brackish ostracod fauna ( early Lago-Mare ostracod assemblages), which defines an oligohaline depositional environment for the RLE. In terms of hydrocarbon prospecting, the Messinian evaporites of the Adana Basin have been considered as a perfect seal for the active Taurus petroleum system. Our results show that due to the complex stratigraphic architecture of the basin fill and the occurrence of two regional erosional surfaces ( MES1 and MES2), the Messinian evaporites are discontinuously present both in surface and in the subsurface of the Adana Basin. However, seal properties in the Adana Basin could be found in the Lower Pliocene deep marine clays of the Avadan Formation. This work leads to suggest a new stratigraphical model for the Messinian deposits of the Adana Basin, allowing us to amend the classical scheme with respect to the Messinian, and to officially define some new formations within the stratigraphy of the Adana Basin.}, language = {en} } @article{SchildgenYildirimCosentinoetal.2014, author = {Schildgen, Taylor F. and Yildirim, C. and Cosentino, Domenico and Strecker, Manfred}, title = {Linking slab break-off, Hellenic trench retreat, and uplift of the Central and Eastern Anatolian plateaus}, series = {Earth science reviews : the international geological journal bridging the gap between research articles and textbooks}, volume = {128}, journal = {Earth science reviews : the international geological journal bridging the gap between research articles and textbooks}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-8252}, doi = {10.1016/j.earscirev.2013.11.006}, pages = {147 -- 168}, year = {2014}, language = {en} }