@article{SchildgenCosentinoBookhagenetal.2012, author = {Schildgen, Taylor F. and Cosentino, D. and Bookhagen, Bodo and Niedermann, Samuel and Yildirim, C. and Echtler, Helmut Peter and Wittmann, Hella and Strecker, Manfred}, title = {Multi-phased uplift of the southern margin of the Central Anatolian plateau, Turkey a record of tectonic and upper mantle processes}, series = {Earth \& planetary science letters}, volume = {317}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2011.12.003}, pages = {85 -- 95}, year = {2012}, abstract = {Uplifted Neogene marine sediments and Quaternary fluvial terraces in the Mut Basin, southern Turkey, reveal a detailed history of surface uplift along the southern margin of the Central Anatolian plateau from the Late Miocene to the present. New surface exposure ages (Be-10, Al-26, and Ne-21) of gravels capping fluvial strath terraces located between 28 and 135 m above the Goksu River in the Mut Basin yield ages ranging from ca. 25 to 130 ka, corresponding to an average incision rate of 0.52 to 0.67 mm/yr. Published biostratigraphic data combined with new interpretations of the fossil assemblages from uplifted marine sediments reveal average uplift rates of 0.25 to 0.37 mm/yr since Late Miocene time (starting between 8 and 5.45 Ma), and 0.72 to 0.74 mm/yr after 1.66 to 1.62 Ma. Together with the terrace abandonment ages, the data imply 0.6 to 0.7 mm/yr uplift rates from 1.6 Ma to the present. The different post-Late Miocene and post-1.6 Ma uplift rates can imply increasing uplift rates through time, or multi-phased uplift with slow uplift or subsidence in between. Longitudinal profiles of rivers in the upper catchment of the Mut and Ermenek basins show no apparent lithologic or fault control on some knickpoints that occur at 1.2 to 1.5 km elevation, implying a transient response to a change in uplift rates. Projections of graded upper relict channel segments to the modern outlet, together with constraints from uplifted marine sediments, show that a slower incision/uplift rate of 0.1 to 0.2 mm/yr preceded the 0.7 mm/yr uplift rate. The river morphology and profile projections therefore reflect multi-phased uplift of the plateau margin, rather than steadily increasing uplift rates. Multi-phased uplift can be explained by lithospheric slab break-off and possibly also the arrival of the Eratosthenes Seamount at the collision zone south of Cyprus.}, language = {en} } @article{SchildgenCosentinoCarusoetal.2012, author = {Schildgen, Taylor F. and Cosentino, D. and Caruso, A. and Buchwaldt, Robert and Yildirim, C. and Bowring, S. A. and Rojay, B. and Echtler, Helmut Peter and Strecker, Manfred}, title = {Surface expression of eastern Mediterranean slab dynamics: Neogene topographic and structural evolution of the southwest margin of the Central Anatolian Plateau, Turkey}, series = {TECTONICS}, volume = {31}, journal = {TECTONICS}, publisher = {AMER GEOPHYSICAL UNION}, address = {WASHINGTON}, issn = {0278-7407}, doi = {10.1029/2011TC003021}, pages = {21}, year = {2012}, abstract = {The southwest margin of the Central Anatolian Plateau has experienced multiple phases of topographic growth, including the formation of localized highs prior to the Late Miocene that were later affected by wholesale uplift of the plateau margin. Our new biostratigraphic data limit the age of uplifted marine sediments at the southwest plateau margin at 1.5 km elevation to <7.17 Ma, and regional lithostratigraphic correlations imply that the age is <6.7 Ma. Single-grain CA-TIMS U-Pb zircon analyses from a reworked ash within the marine sediments yield dates as young as 10.6 Ma, indicating a maximum age that is consistent with the biostratigraphy. Our structural measurements within the uplifted region and fault inversion modeling agree with previous findings in surrounding regions, with early contraction followed by strike-slip and extensional deformation during uplift. Focal mechanisms from shallow earthquakes show that the extensional phase has continued to the present. Broad similarities in the change in the tectonic stress regime (after 8 Ma) and the onset of surface uplift (after 7 Ma) imply that deep-seated process(es) caused post-7 Ma uplift. The geometry of lithospheric slabs beneath the plateau margin, Pliocene to recent alkaline volcanism, and the uplift pattern with accompanying normal faulting point toward slab tearing and localized heating at the base of the lithosphere as a probable mechanism for post-7 Ma uplift of the southwest margin. Considering previous work in the region, there appears to be an important link between slab dynamics and surface uplift throughout the Anatolian Plateau\’s southern margin.}, language = {en} }