@phdthesis{Sauter2015, author = {Sauter, Tilman}, title = {Function by structure}, school = {Universit{\"a}t Potsdam}, pages = {166}, year = {2015}, language = {en} } @article{SauterGeigerKratzetal.2015, author = {Sauter, Tilman and Geiger, Brett and Kratz, Karl and Lendlein, Andreas}, title = {Encasement of metallic cardiovascular stents with endothelial cell-selective copolyetheresterurethane microfibers}, series = {Polymers for advanced technologies}, volume = {26}, journal = {Polymers for advanced technologies}, number = {10}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1042-7147}, doi = {10.1002/pat.3583}, pages = {1209 -- 1216}, year = {2015}, abstract = {Cardiovascular metallic stents established in clinical application are typically coated by a thin polymeric layer on the stent struts to improve hemocompatibility, whereby often a drug is added to the coating to inhibit neointimal hyperplasia. Besides such thin film coatings recently nano/microfiber coated stents are investigated, whereby the fibrous coating was applied circumferential on stents. Here, we explored whether a thin fibrous encasement of metallic stents with preferentially longitudinal aligned fibers and different local fiber densities can be achieved by electrospinning. An elastic degradable copolyetheresterurethane, which is reported to selectively enhance the adhesion of endothelial cells, while simultaneously rejecting smooth muscle cells, was utilized for stent coating. The fibrous stent encasements were microscopically assessed regarding their single fiber diameters, fiber covered area and fiber alignment at three characteristic stent regions before and after stent expansion. Stent coatings with thicknesses in the range from 30 to 50 mu m were achieved via electrospinning with 1,1,1,3,3,3-hexafluoro-2-propanol (HFP)-based polymer solution, while a mixture of HFP and formic acid as solvent resulted in encasements with a thickness below 5 mu m comprising submicron sized single fibers. All polymeric encasements were mechanically stable during expansion, whereby the fibers deposited on the struts remained their position. The observed changes in fiber density and diameter indicated diverse local deformation mechanisms of the microfibers at the different regions between the struts. Based on these results it can be anticipated that the presented fibrous encasement of stents might be a promising alternative to stents with polymeric strut coatings releasing anti-proliferative drugs. Copyright (c) 2015 John Wiley \& Sons, Ltd.}, language = {en} } @article{ZhangSauterFangetal.2015, author = {Zhang, Quanchao and Sauter, Tilman and Fang, Liang and Kratz, Karl and Lendlein, Andreas}, title = {Shape-Memory Capability of Copolyetheresterurethane Microparticles Prepared via Electrospraying}, series = {Macromolecular materials and engineering}, volume = {300}, journal = {Macromolecular materials and engineering}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-7492}, doi = {10.1002/mame.201400267}, pages = {522 -- 530}, year = {2015}, abstract = {Multifunctional thermo-responsive and degradable microparticles exhibiting a shapememory effect (SME) have attracted widespread interest in biomedicine as switchable delivery vehicles or microactuators. In this work almost spherical solid microparticles with an average diameter of 3.9 +/- 0.9 mm are prepared via electrospraying of a copolyetheresterurethane named PDC, which is composed of crystallizable oligo(p-dioxanone) (OPDO) hard and oligo(e-caprolactone) (OCL) switching segments. The PDC microparticles are programmed via compression at different pressures and their shapememory capability is explored by off-line and online heating experiments. When a low programming pressure of 0.2 MPa is applied a pronounced thermally-induced shape-memory effect is achieved with a shape recovery ratio about 80\%, while a high programming pressure of 100 MPa resulted in a weak shape-memory performance. Finally, it is demonstrated that an array of PDC microparticles deposited on a polypropylene (PP) substrate can be successfully programmed into a smart temporary film, which disintegrates upon heating to 60 degrees C.}, language = {en} }