@article{LomadzeKopyshevBargheeretal.2017, author = {Lomadze, Nino and Kopyshev, Alexey and Bargheer, Matias and Wollgarten, Markus and Santer, Svetlana}, title = {Mass production of polymer nano-wires filled with metal nano-particles}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-08153-0}, pages = {3759 -- 3764}, year = {2017}, abstract = {Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro-or macroscale elements is hampered by the lack of structural components that have both, nano-and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.}, language = {en} } @article{KopyshevLomadzeFeldmanetal.2015, author = {Kopyshev, Alexey and Lomadze, Nino and Feldman, David and Genzer, Jan and Santer, Svetlana}, title = {Making polymer brush photosensitive with azobenzene containing surfactants}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {79}, journal = {Polymer : the international journal for the science and technology of polymers}, publisher = {Elsevier Science}, address = {Oxford}, issn = {0032-3861}, doi = {10.1016/j.polymer.2015.09.023}, pages = {65 -- 72}, year = {2015}, abstract = {We report on rendering polyelectrolyte brushes photosensitive by loading them with azobenzene-containing cationic surfactants. Planar poly(methacrylic acid) (PMAA) brushes are synthesized using the "grafting from" free-radical polymerization scheme followed by exposure to a solution of photosensitive surfactants consisting of positively-charged head groups and hydrophobic tails into which azobenzene moieties are inserted. In this study the length of the hydrophobic methylene spacer connecting the azobenzene and the charged head group ranges from 4 to 10 CH2 groups. Under irradiation with UV light, the photo-isomerization of azobenzene integrated into a surfactant results in a change in size, geometry, dipole moment and free volume of the whole molecule. When the brush loaded with photosensitive surfactants is exposed to irradiation with UV interference patterns, the topography of the brush deforms following the distribution of the light intensity, exhibiting surface relief gratings (SRG). Since SRG formation is accompanied by a local rupturing of polymer chains in areas from which the polymer material is receding, most of the polymer material is removed from the surface during treatment with good solvent, leaving behind characteristic patterns of lines or dots. The azobenzene molecules still integrated within the polymer film can be removed by washing the brush with water. The remaining nano-structured brush can then be re-used for further functionalization. Although the opto-mechanically induced rupturing occurs for all surfactants, larger species do not penetrate deep enough into the brush such that after rupturing a leftover layer of polymer material remains on the substrate. This indicates that rupturing occurs predominantly in regions of high surfactant density.}, language = {en} } @article{KopyshevLomadzeFeldmannetal.2015, author = {Kopyshev, Alexey and Lomadze, Nino and Feldmann, David and Genzer, Jan and Santer, Svetlana}, title = {Making polymer brush photosensitive with azobenzene containing surfactants}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {79}, journal = {Polymer : the international journal for the science and technology of polymers}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-3861}, doi = {10.1016/j.polymer.2015.09.023}, pages = {65 -- 72}, year = {2015}, abstract = {We report on rendering polyelectrolyte brushes photosensitive by loading them with azobenzene-containing cationic surfactants. Planar poly( methacrylic acid) (PMAA) brushes are synthesized using the "grafting from" free-radical polymerization scheme followed by exposure to a solution of photosensitive surfactants consisting of positively-charged head groups and hydrophobic tails into which azobenzene moieties are inserted. In this study the length of the hydrophobic methylene spacer connecting the azobenzene and the charged head group ranges from 4 to 10 CH2 groups. Under irradiation with UV light, the photo-isomerization of azobenzene integrated into a surfactant results in a change in size, geometry, dipole moment and free volume of the whole molecule. When the brush loaded with photosensitive surfactants is exposed to irradiation with UV interference patterns, the topography of the brush deforms following the distribution of the light intensity, exhibiting surface relief gratings (SRG). Since SRG formation is accompanied by a local rupturing of polymer chains in areas from which the polymer material is receding, most of the polymer material is removed from the surface during treatment with good solvent, leaving behind characteristic patterns of lines or dots. The azobenzene molecules still integrated within the polymer film can be removed by washing the brush with water. The remaining nano-structured brush can then be re-used for further functionalization. Although the opto-mechanically induced rupturing occurs for all surfactants, larger species do not penetrate deep enough into the brush such that after rupturing a leftover layer of polymer material remains on the substrate. This indicates that rupturing occurs predominantly in regions of high surfactant density.}, language = {en} } @article{KopyshevKanevcheLomadzeetal.2019, author = {Kopyshev, Alexey and Kanevche, Katerina and Lomadze, Nino and Pfitzner, Emanuel and Loebner, Sarah and Patil, Rohan R. and Genzer, Jan and Heberle, Joachim and Santer, Svetlana}, title = {Light-Induced Structuring of Photosensitive Polymer Brushes}, series = {ACS Applied polymer materials}, volume = {1}, journal = {ACS Applied polymer materials}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {2637-6105}, doi = {10.1021/acsapm.9b00705}, pages = {301 -- 3026}, year = {2019}, abstract = {We investigate light-induced irreversible structuring of surface topographies in poly(3-sulfopropyl methacrylate/potassium salt) (PSPMK) brushes on flat solid substrates prepared by surface-initiated atom transfer radical polymerization. The brushes have been loaded with azobenzene-based surfactant comprised of positively charged headgroups and hydrophobic tail. The surfactant exhibits photoresponsive properties through photoisomerization from the trans to cis states leading to significant changes in physicochemical properties of grafted polymer chains. The azobenzene surfactant enables photoresponsive behavior without introducing irreversible changes to chemical composition of the parent polymer brush. Exposing these photosensitive brushes to irradiation with UV interference beams causes the polymer brush to form surface relief grating (SRG) patterns. The cationic surfactant penetrates only similar to 25\% of the upper portion of the PSPMK brush, resulting in the formation of two sections within the brush: a photoresponsive upper layer and nonfunctional buried layer, which is not affected by the UV irradiation. Using nano-FTIR spectroscopy, we characterize locally the chemical composition of the polymer brush and confirm partial penetration of the surfactant within the film. Strong optomechanical stresses take place only within the upper layer of the brush that is impregnated with the surfactants and causes surface topography alternation due to a local rupture of grafted polymer chains. The cleaved polymer chains are then removed from the surface by using a good solvent, leaving behind topographical grating on top of the nonfunctional brush layer. We demonstrate that photostructured polymer brush can be used for reversible switching of brush topography by varying external humidity.}, language = {en} } @article{KopyshevGalvinPatiletal.2016, author = {Kopyshev, Alexey and Galvin, Casey J. and Patil, Rohan R. and Genzer, Jan and Lomadze, Nino and Feldmann, David and Zakrevski, Juri and Santer, Svetlana}, title = {Light-Induced Reversible Change of Roughness and Thickness of Photosensitive Polymer Brushes}, series = {Applied physics : A, Materials science \& processing}, volume = {8}, journal = {Applied physics : A, Materials science \& processing}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.6b06881}, pages = {19175 -- 19184}, year = {2016}, abstract = {We investigate light-induced changes in thickness and roughness of photosensitive polymer brushes containing azobenzene cationic surfactants by atomic force microscopy (AFM) in real time during light irradiation. Because the cis-state of azobenzene unit requires more free volume than its trans counterpart, the UV light-induced expansion of polymer thin films associated with the trans-to-cis isomerism of azobenzene groups is expected to occur. This phenomenon is well documented in physisorbed polymer films containing azobenzene groups. In contrast, photosensitive polymer brushes show a decrease in thickness under UV irradiation. We have found that the azobenzene surfactants in their trans-state form aggregates within the brush. Under irradiation, the surfactants undergo photoisomerization to the cis-state, which is more hydrophilic. As a consequence, the aggregates within the brush are disrupted, and the polymer brush contracts. When subsequently irradiated with blue light the polymer brush thickness returns back to its initial value. This behavior is related to isomerization of the surfactant to the more hydrophobic trans-state and subsequent formation of surfactant aggregates within the polymer brush. The photomechanical function of the dry polymer brush, i.e., contraction and expansion, was found to be reversible with repeated irradiation cycles and requires only a few seconds for switching. In addition to the thickness change, the roughness of the brush also changes reversibly between a few Angstroms (blue light) and several nanometers (UV light). Photosensitive polymer brushes represent smart films with light responsive thickness and roughness that could be used for generating dynamic fluctuating surfaces, the function of which can be turned on and off in a controllable manner on a nanometer length scale.}, language = {en} } @article{LoebnerLomadzeKopyshevetal.2018, author = {Loebner, Sarah and Lomadze, Nino and Kopyshev, Alexey and Koch, Markus and Guskova, Olga and Saphiannikova, Marina and Santer, Svetlana}, title = {Light-Induced Deformation of Azobenzene-Containing Colloidal Spheres}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {122}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {6}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.7b11644}, pages = {2001 -- 2009}, year = {2018}, abstract = {We report on light-induced deformation of colloidal spheres consisting of azobenzene-containing polymers. The colloids of the size between 60 nm and 2 mu m in diameter were drop casted on a glass surface and irradiated with linearly polarized light. It was found that colloidal particles can be deformed up to ca. 6 times of their initial diameter. The maximum degree of deformation depends on the irradiation wavelength and intensity, as well as on colloidal particles size. On the basis of recently proposed theory by Toshchevikov et al. [J. Phys. Chem. Lett. 2017, 8, 1094], we calculated the optomechanical stresses (ca. 100 MPa) needed for such giant deformations and compared them with the experimental results.}, language = {en} } @article{LomadzeKopyshevRueheetal.2011, author = {Lomadze, Nino and Kopyshev, Alexey and R{\"u}he, J{\"u}rgen and Santer, Svetlana}, title = {Light-Induced chain scission in photosensitive polymer brushes}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {44}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {18}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma201016q}, pages = {7372 -- 7377}, year = {2011}, abstract = {We report on a process inducing photomechanical fracture of chemical bonds in photosensitive PMAA polymer brushes. The photosensitive PMAA polymer brushes were prepared by covalent attachment of azobenzene groups to poly(methylacrylic acid) (PMAA) chains generated by surface-initiated polymerization. While homogeneous irradiation leaves the polymer topography unchanged, the azo-PMAA brushes show a strong response upon irradiation with UV interference patterns. The photoisomerization process in the surface-attached polymer films results in the irreversible formation of surface relief gratings (SRG), which are strongly enhanced upon washing with a good solvent for the polymer. The photomechanical forces during mass transport induced by the irradiation lead to the scission of covalent bounds and accordingly to a degrafting of the polymer chains in areas where the polymer is receding from. It is observed that the number of ruptured chains depends strongly on the amount of azo side chains in the polymer.}, language = {en} } @article{FeldmannAryaLomadzeetal.2019, author = {Feldmann, David and Arya, Pooja and Lomadze, Nino and Kopyshev, Alexey and Santer, Svetlana}, title = {Light-driven motion of self-propelled porous Janus particles}, series = {Applied physics letters}, volume = {115}, journal = {Applied physics letters}, number = {26}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.5129238}, pages = {5}, year = {2019}, abstract = {We introduce a versatile mechanism of light-driven self-propelled motion applied to porous Janus-type particles. The mechanism is based on the generation of local light-driven diffusio-osmotic (l-LDDO) flow around each single porous particle subjected to suitable irradiation conditions. The photosensitivity is introduced by a cationic azobenzene containing surfactant, which undergoes a photoisomerization reaction from a more hydrophobic trans-state to a rather hydrophilic cis-state under illumination with light. The negatively charged porous silica particles are dispersed in a corresponding aqueous solution and absorb molecules in their trans-state but expel them in their cis-state. During illumination with blue light triggering both trans-cis and cis-trans isomerization at the same time, the colloids start to move due to the generation of a steady-state diffusive flow of cis-isomers out of and trans-isomers into the particle. This is because a hemi-spherical metal cap partially sealing the colloid breaks the symmetry of the otherwise radially directed local flow around the particle, leading to self-propelled motion. Janus particles exhibit superdiffusive motion with a velocity of similar to 0.5 mu m/s and a persistence length of ca. 50 mu m, confined to microchannels the direction can be maintained up to 300 mu m before rotational diffusion reverts it. Particles forming dimers of different shapes can be made to travel along circular trajectories. The unique feature of this mechanism is that the strength of self-propulsion can be tuned by convenient external optical stimuli (intensity and irradiation wavelength) such that a broad variety of experimental situations can be realized in a spatiotemporal way and in situ.}, language = {en} } @article{AryaFeldmannKopyshevetal.2020, author = {Arya, Pooja and Feldmann, David and Kopyshev, Alexey and Lomadze, Nino and Santer, Svetlana}, title = {Light driven guided and self-organized motion of mesoporous colloidal particles}, series = {Soft matter}, volume = {16}, journal = {Soft matter}, number = {5}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c9sm02068c}, pages = {1148 -- 1155}, year = {2020}, abstract = {We report on guided and self-organized motion of ensembles of mesoporous colloidal particles that can undergo dynamic aggregation or separation upon exposure to light. The forces on particles involve the phenomenon of light-driven diffusioosmosis (LDDO) and are hydrodynamic in nature. They can be made to act passively on the ensemble as a whole but also used to establish a mutual interaction between particles. The latter scenario requires a porous colloid morphology such that the particle can act as a source or sink of a photosensitive surfactant, which drives the LDDO process. The interplay between the two modes of operation leads to fascinating possibilities of dynamical organization and manipulation of colloidal ensembles adsorbed at solid-liquid interfaces. While the passive mode can be thought of to allow for a coarse structuring of a cloud of colloids, the inter-particle mode may be used to impose a fine structure on a 2D particle grid. Local flow is used to impose and tailor interparticle interactions allowing for much larger interaction distances that can be achieved with, e.g., DLVO type of forces, and is much more versatile.}, language = {en} } @article{BekirJelkenJungetal.2021, author = {Bekir, Marek and Jelken, Joachim and Jung, Se-Hyeong and Pich, Andrij and Pacholski, Claudia and Kopyshev, Alexey and Santer, Svetlana}, title = {Dual responsiveness of microgels induced by single light stimulus}, series = {Applied physics letters}, volume = {118}, journal = {Applied physics letters}, number = {9}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/5.0036376}, pages = {6}, year = {2021}, abstract = {We report on the multiple response of microgels triggered by a single optical stimulus. Under irradiation, the volume of the microgels is reversibly switched by more than 20 times. The irradiation initiates two different processes: photo-isomerization of the photo-sensitive surfactant, which forms a complex with the anionic microgel, rendering it photo-responsive; and local heating due to a thermo-plasmonic effect within the structured gold layer on which the microgel is deposited. The photo-responsivity is related to the reversible accommodation/release of the photo-sensitive surfactant depending on its photo-isomerization state, while the thermo-sensitivity is intrinsically built in. We show that under exposure to green light, the thermo-plasmonic effect generates a local hot spot in the gold layer, resulting in the shrinkage of the microgel. This process competes with the simultaneous photo-induced swelling. Depending on the position of the laser spot, the spatiotemporal control of reversible particle shrinking/swelling with a predefined extent on a per-second base can be implemented.}, language = {en} }