@article{SanderHerzogPudelletal.2017, author = {Sander, Mathias and Herzog, Marc and Pudell, Jan-Etienne and Bargheer, Matias and Weinkauf, N. and Pedersen, M. and Newby, G. and Sellmann, J. and Schwarzkopf, J. and Besse, V. and Temnov, V. V. and Gaal, P.}, title = {Spatiotemporal Coherent Control of Thermal Excitations in Solids}, series = {Physical review letters}, volume = {119}, journal = {Physical review letters}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.119.075901}, pages = {102 -- 110}, year = {2017}, abstract = {X-ray reflectivity measurements of femtosecond laser-induced transient gratings (TG) are applied to demonstrate the spatiotemporal coherent control of thermally induced surface deformations on ultrafast time scales. Using grazing incidence x-ray diffraction we unambiguously measure the amplitude of transient surface deformations with sub-angstrom resolution. Understanding the dynamics of femtosecond TG excitations in terms of superposition of acoustic and thermal gratings makes it possible to develop new ways of coherent control in x-ray diffraction experiments. Being the dominant source of TG signal, the long-living thermal grating with spatial period. can be canceled by a second, time-delayed TG excitation shifted by Lambda/2. The ultimate speed limits of such an ultrafast x-ray shutter are inferred from the detailed analysis of thermal and acoustic dynamics in TG experiments.}, language = {en} } @misc{PavlenkoSanderMitzscherlingetal.2016, author = {Pavlenko, Elena S. and Sander, Mathias and Mitzscherling, Steffen and Pudell, Jan-Etienne and Zamponi, Flavio and R{\"o}ssle, Matthias and Bojahr, Andre and Bargheer, Matias}, title = {Azobenzene - functionalized polyelectrolyte nanolayers as ultrafast optoacoustic transducers}, volume = {8}, doi = {10.1039/C6NR01448H}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101996}, pages = {13297 -- 13302}, year = {2016}, abstract = {We introduce azobenzene-functionalized polyelectrolyte multilayers as efficient, inexpensive optoacoustic transducers for hyper-sound strain waves in the GHz range. By picosecond transient reflectivity measurements we study the creation of nanoscale strain waves, their reflection from interfaces, damping by scattering from nanoparticles and propagation in soft and hard adjacent materials like polymer layers, quartz and mica. The amplitude of the generated strain ε ∼ 5 × 10-4 is calibrated by ultrafast X-ray diffraction.}, language = {en} } @article{ShaydukHerzogBojahretal.2013, author = {Shayduk, Roman and Herzog, Marc and Bojahr, Andre and Schick, Daniel and Gaal, Peter and Leitenberger, Wolfram and Navirian, Hengameh and Sander, Mathias and Goldshteyn, Jevgenij and Vrejoiu, Ionela and Bargheer, Matias}, title = {Direct time-domain sampling of subterahertz coherent acoustic phonon spectra in SrTiO3 using ultrafast x-ray diffraction}, series = {Physical review : B, Condensed matter and materials physics}, volume = {87}, journal = {Physical review : B, Condensed matter and materials physics}, number = {18}, publisher = {American Physical Society}, address = {College Park}, issn = {1098-0121}, doi = {10.1103/PhysRevB.87.184301}, pages = {7}, year = {2013}, abstract = {We synthesize sub-THz longitudinal quasimonochromatic acoustic phonons in a SrTiO3 single crystal using a SrRuO3/SrTiO3 superlattice as an optical-acoustic transducer. The generated acoustic phonon spectrum is determined using ultrafast x-ray diffraction. The analysis of the generated phonon spectrum in the time domain reveals a k-vector dependent phonon lifetime. It is observed that even at sub-THz frequencies the phonon lifetime agrees with the 1/omega(2) power law known from Akhiezer's model for hyper sound attenuation. The observed shift of the synthesized spectrum to the higher q is discussed in the framework of nonlinear effects appearing due to the high amplitude of the synthesized phonons.}, language = {en} } @article{BojahrGohlkeLeitenbergeretal.2015, author = {Bojahr, Andre and Gohlke, Matthias and Leitenberger, Wolfram and Pudell, Jan-Etienne and Reinhardt, Matthias and von Reppert, Alexander and R{\"o}ssle, Matthias and Sander, Mathias and Gaal, Peter and Bargheer, Matias}, title = {Second Harmonic Generation of Nanoscale Phonon Wave Packets}, series = {Physical review letters}, volume = {115}, journal = {Physical review letters}, number = {19}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.115.195502}, pages = {5}, year = {2015}, abstract = {Phonons are often regarded as delocalized quasiparticles with certain energy and momentum. The anharmonic interaction of phonons determines macroscopic properties of the solid, such as thermal expansion or thermal conductivity, and a detailed understanding becomes increasingly important for functional nanostructures. Although phonon-phonon scattering processes depicted in simple wave-vector diagrams are the basis of theories describing these macroscopic phenomena, experiments directly accessing these coupling channels are scarce. We synthesize monochromatic acoustic phonon wave packets with only a few cycles to introduce nonlinear phononics as the acoustic counterpart to nonlinear optics. Control of the wave vector, bandwidth, and consequently spatial extent of the phonon wave packets allows us to observe nonlinear phonon interaction, in particular, second harmonic generation, in real time by wave-vector-sensitive Brillouin scattering with x-rays and optical photons.}, language = {en} } @article{PavlenkoSanderMitzscherlingetal.2016, author = {Pavlenko, Elena S. and Sander, Mathias and Mitzscherling, S. and Pudell, Jan-Etienne and Zamponi, Flavio and Roessle, M. and Bojahr, Andre and Bargheer, Matias}, title = {Azobenzene - functionalized polyelectrolyte nanolayers as ultrafast optoacoustic transducers}, series = {Nanoscale}, volume = {8}, journal = {Nanoscale}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/c6nr01448h}, pages = {13297 -- 13302}, year = {2016}, abstract = {We introduce azobenzene-functionalized polyelectrolyte multilayers as efficient, inexpensive optoacoustic transducers for hyper-sound strain waves in the GHz range. By picosecond transient reflectivity measurements we study the creation of nanoscale strain waves, their reflection from interfaces, damping by scattering from nanoparticles and propagation in soft and hard adjacent materials like polymer layers, quartz and mica. The amplitude of the generated strain epsilon similar to 5 x 10(-4) is calibrated by ultrafast X-ray diffraction.}, language = {en} } @article{SanderKocKwamenetal.2016, author = {Sander, Mathias and Koc, A. and Kwamen, C. T. and Michaels, H. and von Reppert, Alexander and Pudell, Jan-Etienne and Zamponi, Flavio and Bargheer, Matias and Sellmann, J. and Schwarzkopf, J. and Gaal, P.}, title = {Characterization of an ultrafast Bragg-Switch for shortening hard x-ray pulses}, series = {Journal of applied physics}, volume = {120}, journal = {Journal of applied physics}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/1.4967835}, pages = {7}, year = {2016}, abstract = {We present a nanostructured device that functions as photoacoustic hard x-ray switch. The device is triggered by femtosecond laser pulses and allows for temporal gating of hard x-rays on picosecond (ps) timescales. It may be used for pulse picking or even pulse shortening in 3rd generation synchrotron sources. Previous approaches mainly suffered from insufficient switching contrasts due to excitation-induced thermal distortions. We present a new approach where thermal distortions are spatially separated from the functional switching layers in the structure. Our measurements yield a switching contrast of 14, which is sufficient for efficient hard x-ray pulse shortening. The optimized structure also allows for utilizing the switch at high repetition rates of up to 208 kHz. Published by AIP Publishing.}, language = {en} } @article{PavlenkoSanderCuietal.2016, author = {Pavlenko, Elena S. and Sander, Mathias and Cui, Q. and Bargheer, Matias}, title = {Gold Nanorods Sense the Ultrafast Viscoelastic Deformation of Polymers upon Molecular Strain Actuation}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {120}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.6b06915}, pages = {24957 -- 24964}, year = {2016}, abstract = {On the basis of the layer-by-layer deposition of polyelectrolytes, we have designed hybrid nanolayer composites for integrated optoacoustic experiments. The femtosecond-laser-excitation of an Azo functionalized film launches nanoscale strain waves at GHz frequencies into a transparent polymer layer. Gold nanorods deposited on the surface sense the arrival of these hyper-sound-waves on the picosecond time scale via a modification of their longitudinal plasmon resonance. We simulated the strain waves using a simple linear masses-and-springs model, which yields good agreement with the observed time scales associated with the nanolayer thicknesses of the constituent materials. From systematic experiments with calibrated strain amplitudes we conclude that reversible viscoelastic deformations of the polyelectrolyte multilayers are triggered by ultrashort pressure transients of about 4 MPa. Our experiments show that strain-mediated interactions in nanoarchitectures composed of molecular photoswitches and plasmonic particles may be used to design new functionalities. The approach combines the highly flexible and cost-effective preparation of polyelectrolyte multilayers with ultrafast molecular strain actuation and plasmonic sensing. Although we use simple flat layered structures for demonstration, this new concept can be used for three-dimensional nanoassemblies with different functionalities. The ultrafast and reversible nature of the response is highly desirable, and the short wavelength associated with the high frequency of the hyper-sound-waves connecting photoactive molecules and nanoparticles inherently gives spectroscopic access to the nanoscale. High-frequency elastic moduli are derived from the ultrafast spectroscopy of the hypersonic response in polyelectrolyte multilayers.}, language = {en} } @article{SanderPudellHerzogetal.2017, author = {Sander, Mathias and Pudell, Jan-Etienne and Herzog, Marc and Bargheer, Matias and Bauer, R. and Besse, V. and Temnov, V. and Gaal, P.}, title = {Quantitative disentanglement of coherent and incoherent laser-induced surface deformations by time-resolved x-ray reflectivity}, series = {Applied physics letters}, volume = {111}, journal = {Applied physics letters}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.5004522}, pages = {4}, year = {2017}, abstract = {We present time-resolved x-ray reflectivity measurements on laser excited coherent and incoherent surface deformations of thin metallic films. Based on a kinematical diffraction model, we derive the surface amplitude from the diffracted x-ray intensity and resolve transient surface excursions with sub-angstrom spatial precision and 70 ps temporal resolution. The analysis allows for decomposition of the surface amplitude into multiple coherent acoustic modes and a substantial contribution from incoherent phonons which constitute the sample heating. Published by AIP Publishing.}, language = {en} } @article{LiebigSarhanSanderetal.2017, author = {Liebig, Ferenc and Sarhan, Radwan Mohamed and Sander, Mathias and Koopman, Wouter-Willem Adriaan and Schuetz, Roman and Bargheer, Matias and Koetz, Joachim}, title = {Deposition of Gold Nanotriangles in Large Scale Close-Packed Monolayers for X-ray-Based Temperature Calibration and SERS Monitoring of Plasmon-Driven Catalytic Reactions}, series = {ACS applied materials \& interfaces}, volume = {9}, journal = {ACS applied materials \& interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.7b07231}, pages = {20247 -- 20253}, year = {2017}, language = {en} } @phdthesis{Sander2018, author = {Sander, Mathias}, title = {Ultrafast tailored strain fields in nanostructures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417863}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 119}, year = {2018}, abstract = {This publication based thesis, which consists of seven published articles, summarizes my contributions to the research field of laser excited ultrafast structural dynamics. The coherent and incoherent lattice dynamics on microscopic length scales are detected by ultrashort optical and X-ray pulses. The understanding of the complex physical processes is essential for future improvements of technological applications. For this purpose, tabletop soruces and large scale facilities, e.g. synchrotrons, are employed to study structural dynamics of longitudinal acoustic strain waves and heat transport. The investigated effects cover timescales from hundreds of femtoseconds up to several microseconds. The main part of this thesis is dedicated to the investigation of tailored phonon wave packets propagating in perovskite nanostructures. Tailoring is achieved either by laser excitation of nanostructured bilayer samples or by a temporal series of laser pulses. Due to the propagation of longitudinal acoustic phonons, the out-of-plane lattice spacing of a thin film insulator-metal bilayer sample is modulated on an ultrafast timescale. This leads to an ultrafast modulation of the X-ray diffraction efficiency which is employed as a phonon Bragg switch to shorten hard X-ray pulses emitted from a 3rd generation synchrotron. In addition, we have observed nonlinear mixing of high amplitude phonon wave packets which originates from an anharmonic interatomic potential. A chirped optical pulse sequence excites a narrow band phonon wave packet with specific momentum and energy. The second harmonic generation of these phonon wave packets is followed by ultrafast X-ray diffraction. Phonon upconversion takes place because the high amplitude phonon wave packet modulates the acoustic properties of the crystal which leads to self steepening and to the successive generation of higher harmonics of the phonon wave packet. Furthermore, we have demonstrated ultrafast strain in direction parallel to the sample surface. Two consecutive so-called transient grating excitations displaced in space and time are used to coherently control thermal gradients and surface acoustic modes. The amplitude of the coherent and incoherent surface excursion is disentangled by time resolved X-ray reflectivity measurements. We calibrate the absolute amplitude of thermal and acoustic surface excursion with measurements of longitudinal phonon propagation. In addition, we develop a diffraction model which allows for measuring the surface excursion on an absolute length scale with sub-{\"A}angstr{\"o}m precision. Finally, I demonstrate full coherent control of an excited surface deformation by amplifying and suppressing thermal and coherent excitations at the surface of a laser-excited Yttrium-manganite sample.}, language = {en} }