@article{NietoMorenoRohrmannvanderMeeretal.2016, author = {Nieto-Moreno, Vanesa and Rohrmann, Alexander and van der Meer, Marcel T. J. and Damste, Jaap S. Sinninghe and Sachse, Dirk and Tofelde, Stefanie and Niedermeyer, Eva M. and Strecker, Manfred and Mulch, Andreas}, title = {Elevation-dependent changes in n-alkane delta D and soil GDGTs across the South Central Andes}, series = {Earth \& planetary science letters}, volume = {453}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.07.049}, pages = {234 -- 242}, year = {2016}, abstract = {Surface uplift of large plateaus may significantly influence regional climate and more specifically precipitation patterns and temperature, sometimes complicating paleoaltimetry interpretations. Thus, understanding the topographic evolution of tectonically active mountain belts benefits from continued development of reliable proxies to reduce uncertainties in paleoaltimetry reconstructions. Lipid biomarker-based proxies provide a novel approach to stable isotope paleoaltimetry and complement authigenic or pedogenic mineral proxy materials, in particular outside semi-arid climate zones where soil carbonates are not abundant but (soil) organic matter has a high preservation potential. Here we present delta D values of soil-derived n-alkanes and mean annual air temperature (MAT) estimates based on branched glycerol dialkyl glycerol tetraether (brGDGT) distributions to assess their potential for paleoelevation reconstructions in the southern central Andes. We analyzed soil samples across two environmental and hydrological gradients that include a hillslope (26-28 degrees S) and a valley (22-24 degrees S) transect on the windward flanks of Central Andean Eastern Cordillera in NW Argentina. Our results show that present-day n-alkane delta D values and brGDGT-based MAT estimates are both linearly related with elevation and in good agreement with present-day climate conditions. Soil n-alkanes show a delta D lapse rate (A(delta D)) of -1.64 parts per thousand/100 m (R-2 = 0.91, p < 0.01) at the hillslope transect, within the range of delta D lapse rates from precipitation and surface waters in other tropical regions in the Andes like the Eastern Cordillera in Colombia and Bolivia and the Equatorial and Peruvian Andes. BrGDGT-derived soil temperatures are similar to monitored winter temperatures in the region and show a lapse rate of Delta T = -0.51 degrees C/100 m (R-2 = 0.91, p < 0.01), comparable with lapse rates from in situ soil temperature measurements, satellite derived land-surface temperatures at this transect, and weather stations from the Eastern Cordillera at similar latitude. As a result of an increasing leeward sampling position along the valley transect lapse rates are biased towards lower values and display higher scatter (Delta(delta D) = -0.9 parts per thousand/100 m, R-2 = 0.76, p < 0.01 and Delta T = -0.19 degrees C/100 m, R-2 = 0.48, p < 0.05). Despite this higher complexity, they are in line with lapse rates from stream-water samples and in situ soil temperature measurements along the same transect. Our results demonstrate that both soil n-alkane delta D values and MAT reconstructions based on brGDGTs distributions from the hillslope transect (Delta(delta D) = -1.64 parts per thousand/100 m, R-2 = 0.91, p < 0.01 and Delta T = -0.51 degrees C/100 m, R-2 = 0.91, p < 0.01) track the direct effects of orography on precipitation and temperature and hence the combined effects of local and regional hydrology as well as elevation. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{RohrmannSachseMulchetal.2016, author = {Rohrmann, Alexander and Sachse, Dirk and Mulch, Andreas and Pingel, Heiko and Tofelde, Stefanie and Alonso, Ricardo N. and Strecker, Manfred}, title = {Miocene orographic uplift forces rapid hydrological change in the southern central Andes}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep35678}, pages = {4283 -- 4306}, year = {2016}, abstract = {Rainfall in the central Andes associated with the South American Monsoon and the South American Low-Level Jet results from orographic effects on atmospheric circulation exerted by the Andean Plateau and the Eastern Cordillera. However, despite its importance for South American climate, no reliable records exist that allow decoding the evolution of thresholds and interactions between Andean topography and atmospheric circulation, especially regarding the onset of humid conditions in the inherently dry southern central Andes. Here, we employ multi-proxy isotope data of lipid biomarkers, pedogenic carbonates and volcanic glass from the Eastern Cordillera of NW Argentina and present the first long-term evapotranspiration record. We find that regional eco-hydrology and vegetation changes are associated with initiation of moisture transport via the South American Low-Level Jet at 7.6 Ma, and subsequent lateral growth of the orogen at 6.5 Ma. Our results highlight that topographically induced changes in atmospheric circulation patterns, not global climate change, were responsible for late Miocene environmental change in this part of the southern hemisphere. This suggests that mountain building over time fundamentally controlled habitat evolution along the central Andes.}, language = {en} }