@article{SachseKahmenGleixner2009, author = {Sachse, Dirk and Kahmen, Ansgar and Gleixner, Gerd}, title = {Significant seasonal variation in the hydrogen isotopic composition of leaf-wax lipids for two deciduous tree ecosystems (Fagus sylvativa and Acer pseudoplatanus)}, issn = {0146-6380}, doi = {10.1016/j.orggeochem.2009.02.008}, year = {2009}, abstract = {Compound specific hydrogen isotope ratios (delta D) of long chain sedimentary n-alkanes, which mostly originate from the leaf waxes of higher terrestrial plants, are increasingly employed as paleoclimate proxies. While soil water is the ultimate hydrogen source for these lipids and the isotopic fractionation during biosynthesis of lipids is thought to remain constant, environmental parameters and plant physiological processes can alter the apparent hydrogen isotopic fractionation between leaf-wax lipids and a plant's source water. However, the magnitude and timing of these effects and their influence on the isotopic composition of lipids from higher terrestrial plants are still not well understood. Therefore we investigated the seasonal variability of leaf-wax n-alkane delta D values for two different temperate deciduous forest ecosystems that are dominated by two different tree species, Beech (Fagus sylvatica) and Maple (Acer pseudoplatanus). We found significant seasonal variations for both tree species in n-alkane delta D values of up to 40\%. on timescales as short as one week. Also, the isotopic difference between different n-alkanes from the same plant species did vary significantly and reached up to 50 parts per thousand at the same time when overall n-alkane concentrations were lowest. Since delta D values of soil water at 5 and 10 cm depth, which we assume represent the delta D value of the major water source for the investigated beech trees, were enriched in autumn compared to the spring by 30 parts per thousand, whereas n-alkane delta D values increased only by 10 parts per thousand, we observed variations in the apparent fractionation between beech leaf derived n-alkanes and soil water of up to 20 parts per thousand on a seasonal scale. This observed change in the apparent fractionation was likely caused by differences in leaf water isotopic enrichment. Based on mechanistic leaf water models we conclude that changes in the isotopic difference between water vapor and soil water were the most likely reason for the observed changes in the apparent fractionation between n- alkanes and soil water. The large variability of n-alkane concentrations and delta D values over time implies a continuous de nova synthesis of these compounds over the growing season with turnover times possibly as short as weeks. The signal to reach the soil therefore represents an integrated record of the last weeks before leaf senescence. This holds true also for the sedimentary record of small catchment lakes in humid, temperate climates, where wind transport of leaf-wax lipids is negligible compared to transfer through soil and the massive input of leaves directly into the lake in autumn.}, language = {en} } @article{GarcinSchwabGleixneretal.2012, author = {Garcin, Yannick and Schwab, Valerie F. and Gleixner, Gerd and Kahmen, Ansgar and Todou, Gilbert and Sene, Olivier and Onana, Jean-Michel and Achoundong, Gaston and Sachse, Dirk}, title = {Hydrogen isotope ratios of lacustrine sedimentary n-alkanes as proxies of tropical African hydrology insights from a calibration transect across Cameroon}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {79}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, number = {4}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2011.11.039}, pages = {106 -- 126}, year = {2012}, abstract = {Hydrogen isotope values (delta D) of sedimentary aquatic and terrestrial lipid biomarkers, originating from algae, bacteria, and leaf wax, have been used to record isotopic properties of ancient source water (i.e., precipitation and/or lake water) in several mid-and high-latitude lacustrine environments. In the tropics, however, where both processes associated with isotope fractionation in the hydrologic system and vegetation strongly differ from those at higher latitudes, calibration studies for this proxy are not yet available. To close this gap of knowledge, we sampled surface sediments from 11 lakes in Cameroon to identify those hydro-climatological processes and physiological factors that determine the hydrogen isotopic composition of aquatic and terrestrial lipid biomarkers. Here we present a robust framework for the application of compound-specific hydrogen isotopes in tropical Africa. Our results show that the delta D values of the aquatic lipid biomarker n-C(17) alkane were not correlated with the delta D values of lake water. Carbon isotope measurements indicate that the n-C(17) alkane was derived from multiple source organisms that used different hydrogen pools for biosynthesis. We demonstrate that the delta D values of the n-C(29) alkane were correlated with the delta D values of surface water (i.e., river water and groundwater), which, on large spatial scales, reflect the isotopic composition of mean annual precipitation. Such a relationship has been observed at higher latitudes, supporting the robustness of the leaf-wax lipid delta D proxy on a hemispheric spatial scale. In contrast, the delta D values of the n-C(31) alkane did not show such a relationship but instead were correlated with the evaporative lake water delta D values. This result suggests distinct water sources for both leaf-wax lipids, most likely originating from two different groups of plants. These new findings have important implications for the interpretation of long-chain n-alkane delta D records from ancient lake sediments. In particular, a robust interpretation of palaeohydrological data requires knowledge of the vegetation in the catchment area as different plants may utilise different water sources. Our results also suggest that the combination of carbon and hydrogen isotopes does help to differentiate between the metabolic pathway and/or growth form of organisms and therefore, the source of hydrogen used during lipid biosynthesis.}, language = {en} } @article{GarcinSchefussSchwabetal.2014, author = {Garcin, Yannick and Schefuss, Enno and Schwab, Valerie F. and Garreta, Vincent and Gleixner, Gerd and Vincens, Annie and Todou, Gilbert and Sene, Olivier and Onana, Jean-Michel and Achoundong, Gaston and Sachse, Dirk}, title = {Reconstructing C-3 and C-4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {142}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2014.07.004}, pages = {482 -- 500}, year = {2014}, abstract = {Trees and shrubs in tropical Africa use the C-3 cycle as a carbon fixation pathway during photosynthesis, while grasses and sedges mostly use the C-4 cycle. Leaf-wax lipids from sedimentary archives such as the long-chain n-alkanes (e.g., n-C-27 to n-C-33) inherit carbon isotope ratios that are representative of the carbon fixation pathway. Therefore, n-alkane delta C-13 values are often used to reconstruct past C-3/C-4 composition of vegetation, assuming that the relative proportions of C-3 and C-4 leaf waxes reflect the relative proportions of C-3 and C-4 plants. We have compared the delta C-13 values of n-alkanes from modern C-3 and C-4 plants with previously published values from recent lake sediments and provide a framework for estimating the fractional contribution (areal-based) of C-3 vegetation cover (f(C3)) represented by these sedimentary archives. Samples were collected in Cameroon, across a latitudinal transect that accommodates a wide range of climate zones and vegetation types, as reflected in the progressive northward replacement of C-3-dominated rain forest by C-4-dominated savanna. The C-3 plants analysed were characterised by substantially higher abundances of n-C-29 alkanes and by substantially lower abundances of n-C-33 alkanes than the C-4 plants. Furthermore, the sedimentary delta C-13 values of n-C-29 and n-C-31 alkanes from recent lake sediments in Cameroon (-37.4\%) to 26.5\%) were generally within the range of delta C-13 values for C-3 plants, even when from sites where C-4 plants dominated the catchment vegetation. In such cases simple linear mixing models fail to accurately reconstruct the relative proportions of C-3 and C-4 vegetation cover when using the delta C-13 values of sedimentary n-alkanes, overestimating the proportion of C-3 vegetation, likely as a consequence of the differences in plant wax production, preservation, transport, and/or deposition between C-3 and C-4 plants. We therefore tested a set of non-linear binary mixing models using delta C-13 values from both C-3 and C-4 vegetation as end-members. The non-linear models included a sigmoid function (sine-squared) that describes small variations in the f(C3) values as the minimum and maximum delta C-13 values are approached, and a hyperbolic function that takes into account the differences between C-3 and C-4 plants discussed above. Model fitting and the estimation of uncertainties were completed using the Monte Carlo algorithm and can be improved by future data addition. Models that provided the best fit with the observed delta C-13 values of sedimentary n-alkanes were either hyperbolic functions or a combination of hyperbolic and sine-squared functions. Such non-linear models may be used to convert delta C-13 measurements on sedimentary n-alkanes directly into reconstructions of C-3 vegetation cover. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SchwabGarcinSachseetal.2015, author = {Schwab, Valerie F. and Garcin, Yannick and Sachse, Dirk and Todou, Gilbert and Sene, Olivier and Onana, Jean-Michel and Achoundong, Gaston and Gleixner, Gerd}, title = {Dinosterol delta D values in stratified tropical lakes (Cameroon) are affected by eutrophication}, series = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, volume = {88}, journal = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0146-6380}, doi = {10.1016/j.orggeochem.2015.08.003}, pages = {35 -- 49}, year = {2015}, abstract = {In freshwater settings, dinosterol (4 alpha,23,24-trimethyl-5 alpha-cholest-22E-en-3 beta-ol) is produced primarily by dinoflagellates, which encompass various species including autotrophs, mixotrophs and heterotrophs. Due to its source specificity and occurrence in lake and marine sediments, its presence and hydrogen isotopic composition (delta D) should be valuable proxies for paleohydrological reconstruction. However, because the purity required for hydrogen isotope measurements is difficult to achieve using standard wet chemical purification methods, their potential as a paleohydrological proxy is rarely exploited. In this study, we tested delta D values of dinosterol in both particulate organic matter (POM) and sediments of stratified tropical freshwater lakes (from Cameroon) as a paleohydrological proxy, the lakes being characterized by variable degrees of eutrophication. In POM and sediment samples, the delta D values of dinosterol correlated with lake water delta D values, confirming a first order influence of source water delta D values. However, we observed that sedimentary dinosterol was D enriched from ca. 19 to 54\% compared with POM dinosterol. The enrichment correlated with lake water column conditions, mainly the redox potential at the oxic-anoxic interface (E-h OAI). The observations suggest that paleohydrologic reconstruction from delta D values of dinosterol in the sediments of stratified tropical lakes ought to be sensitive to the depositional environment, in addition to lake water delta D values, with more positive dinosterol delta values potentially reflecting increasing lake eutrophication. Furthermore, in lake sediments, the concentration of partially reduced vs. non-reduced C-34 botryococcenes, stanols vs. stenols, and bacterial (diploptene, diplopterol and beta beta-bishomohopanol) vs. planktonic/terrestrial lipids (cholesterol, campesterol and dinosterol) correlated with Eh OAI. We suggest using such molecular proxies for lake redox conditions in combination with dinosterol delta D values to evaluate the effect of lake trophic status on sedimentary dinosterol delta D values, as a basis for accurately reconstructing tropical lake water delta D values. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SchwabGarcinSachseetal.2015, author = {Schwab, Valerie F. and Garcin, Yannick and Sachse, Dirk and Todou, Gilbert and Sene, Olivier and Onana, Jean-Michel and Achoundong, Gaston and Gleixner, Gerd}, title = {Effect of aridity on delta C-13 and delta D values of C-3 plant- and C-4 graminoid-derived leaf wax lipids from soils along an environmental gradient in Cameroon (Western Central Africa)}, series = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, volume = {78}, journal = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0146-6380}, doi = {10.1016/j.orggeochem.2014.09.007}, pages = {99 -- 109}, year = {2015}, abstract = {The observation that the hydrogen isotope composition (delta D) of leaf wax lipids is determined mainly by precipitation delta D values, has resulted in the application of these biomarkers to reconstruct paleoclimate from geological records. However, because the delta D values of leaf wax lipids are additionally affected by vegetation type and ecosystem evapotranspiration, paleoclimatic reconstruction remains at best semi-quantitative. Here, we used published results for the carbon isotope composition (delta C-13) of n-alkanes in common plants along a latitudinal gradient in C-3/C-4 vegetation and relative humidity in Cameroon and demonstrated that pentacyclic triterpene methyl ethers (PTMEs) and n-C-29 and n-C-31 in the same soil, derived mainly from C-4 graminoids (e.g. grass) and C-3 plants (e.g. trees and shrubs), respectively. We found that the delta D values of soil n-C-27, n-C29 and n-C-31, and PTMEs correlated significantly with surface water delta D values, supporting previous observations that leaf wax lipid delta D values are an effective proxy for reconstructing precipitation delta D values even if plant types changed significantly. The apparent fractionation (epsilon(app)) between leaf wax lipid and precipitation delta D values remained relatively constant for C-3-derived long chain n-alkanes, whereas eapp of C-4-derived PTMEs decreased by 20 parts per thousand along the latitudinal gradient encompassing a relative humidity range from 80\% to 45\%. Our results indicate that PTME delta D values derived from C-4 graminoids may be a more reliable paleo-ecohydrological proxy for ecosystem evapotranspiration within tropical and sub-tropical Africa than n-alkane delta D values, the latter being a better proxy for surface water delta D values. We suggest that vegetation changes associated with different plant water sources and/or difference in timing of leaf wax synthesis between C-3 trees of the transitional class and C-3 shrubs of the savanna resulted in a D depletion in soil long chain n-alkanes, thereby counteracting the effect of evapotranspiration D enrichment along the gradient. In contrast, evaporative D enrichment of leaf and soil water was significant enough to be recorded in the delta D values of PTMEs derived from C-4 graminoids, likely because PTMEs recorded the hydrogen isotopic composition of the same vegetation type.}, language = {en} } @article{HernandezGleixnerSachseetal.2017, author = {Hernandez, Martin A. and Gleixner, Gerd and Sachse, Dirk and Alvarez, Hector M.}, title = {Carbon Allocation in Rhodococcus jostii RHA1 in Response to Disruption and Overexpression of nlpR Regulatory Gene, Based on C-13-labeling Analysis}, series = {Frontiers in microbiology}, volume = {8}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2017.01992}, pages = {11}, year = {2017}, abstract = {Nitrogen lipid regulator (NlpR) is a pleiotropic regulator that positively controls genes associated with both nitrogen and lipid metabolism in the oleaginous bacterium Rhodococcus jostii RHA1. In this study, we investigated the effect of nlpR disruption and overexpression on the assimilation of C-13-labeled glucose as carbon source, during cultivation of cells under nitrogen-limiting and nitrogen-rich conditions, respectively. Label incorporation into the total lipid extract (TLE) fraction was about 30\% lower in the mutant strain in comparison with the wild type strain under low-nitrogen conditions. Moreover, a higher C-13 abundance (similar to 60\%) into the extracellular polymeric substance fraction was observed in the mutant strain, nlpR disruption also promoted a decrease in the label incorporation into several TLE-derivative fractions including neutral lipids (NL), glycolipids (GL), phospholipids (PL), triacylglycerols (TAG), diacylglycerols (DAG), and free fatty acids (FFA), with the DAG being the most affected. In contrast, the nlpR overexpression in RHA1 cells under nitrogen-rich conditions produced an increase of the label incorporation into the TLE and its derivative NL and PL fractions, the last one being the highest C-13 enriched. In addition, a higher C-13 enrichment occurred in the TAG, DAG, and FFA fractions after nlpR induction, with the FFA fraction being the most affected within the TLE. Isotopic-labeling experiments demonstrated that NlpR regulator is contributing in oleaginous phenotype of R. jostii RHA1 to the allocation of carbon into the different lipid fractions in response to nitrogen levels, increasing the rate of carbon flux into lipid metabolism.}, language = {en} }