@phdthesis{Robinson2011, author = {Robinson, Alexander}, title = {Modeling the Greenland Ice Sheet response to climate change in the past and future}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50430}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The Greenland Ice Sheet (GIS) contains enough water volume to raise global sea level by over 7 meters. It is a relic of past glacial climates that could be strongly affected by a warming world. Several studies have been performed to investigate the sensitivity of the ice sheet to changes in climate, but large uncertainties in its long-term response still exist. In this thesis, a new approach has been developed and applied to modeling the GIS response to climate change. The advantages compared to previous approaches are (i) that it can be applied over a wide range of climatic scenarios (both in the deep past and the future), (ii) that it includes the relevant feedback processes between the climate and the ice sheet and (iii) that it is highly computationally efficient, allowing simulations over very long timescales. The new regional energy-moisture balance model (REMBO) has been developed to model the climate and surface mass balance over Greenland and it represents an improvement compared to conventional approaches in modeling present-day conditions. Furthermore, the evolution of the GIS has been simulated over the last glacial cycle using an ensemble of model versions. The model performance has been validated against field observations of the present-day climate and surface mass balance, as well as paleo information from ice cores. The GIS contribution to sea level rise during the last interglacial is estimated to be between 0.5-4.1 m, consistent with previous estimates. The ensemble of model versions has been constrained to those that are consistent with the data, and a range of valid parameter values has been defined, allowing quantification of the uncertainty and sensitivity of the modeling approach. Using the constrained model ensemble, the sensitivity of the GIS to long-term climate change was investigated. It was found that the GIS exhibits hysteresis behavior (i.e., it is multi-stable under certain conditions), and that a temperature threshold exists above which the ice sheet transitions to an essentially ice-free state. The threshold in the global temperature is estimated to be in the range of 1.3-2.3°C above preindustrial conditions, significantly lower than previously believed. The timescale of total melt scales non-linearly with the overshoot above the temperature threshold, such that a 2°C anomaly causes the ice sheet to melt in ca. 50,000 years, but an anomaly of 6°C will melt the ice sheet in less than 4,000 years. The meltback of the ice sheet was found to become irreversible after a fraction of the ice sheet is already lost - but this level of irreversibility also depends on the temperature anomaly.}, language = {en} } @article{LevermannClarkMarzeionetal.2013, author = {Levermann, Anders and Clark, Peter U. and Marzeion, Ben and Milne, Glenn A. and Pollard, David and Radic, Valentina and Robinson, Alexander}, title = {The multimillennial sea-level commitment of global warming}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {110}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {34}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1219414110}, pages = {13745 -- 13750}, year = {2013}, abstract = {Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m degrees C-1 and 1.2 m degrees C-1 of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m degrees C-1 within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales.}, language = {en} }