@article{MenzelGayeMishraetal.2014, author = {Menzel, Philip and Gaye, Birgit and Mishra, Praveen Kumar and Anoop, Ambili and Basavaiah, Nathani and Marwan, Norbert and Plessen, Birgit and Prasad, Sushma and Riedel, Nils and Stebich, Martina and Wiesner, Martin G.}, title = {Linking Holocene drying trends from Lonar Lake in monsoonal central India to North Atlantic cooling events}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {410}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2014.05.044}, pages = {164 -- 178}, year = {2014}, abstract = {We present the results of biogeochemical and mineralogical analyses on a sediment core that covers the Holocene sedimentation history of the climatically sensitive, closed, saline, and alkaline Lonar Lake in the core monsoon zone in central India. We compare our results of C/N ratios, stable carbon and nitrogen isotopes, grain-size, as well as amino acid derived degradation proxies with climatically sensitive proxies of other records from South Asia and the North Atlantic region. The comparison reveals some more or less contemporaneous climate shifts. At Lonar Lake, a general long term climate transition from wet conditions during the early Holocene to drier conditions during the late Holocene, delineating the insolation curve, can be reconstructed. In addition to the previously identified periods of prolonged drought during 4.6-3.9 and 2.0-0.6 cal ka that have been attributed to temperature changes in the Indo Pacific Warm Pool, several additional phases of shorter term climate alteration superimposed upon the general climate trend can be identified. These correlate with cold phases in the North Atlantic region. The most pronounced climate deteriorations indicated by our data occurred during 62-5.2,4.6-3.9, and 2.0-0.6 cal ka BP. The strong dry phase between 4.6 and 3.9 cal ka BP at Lonar Lake corroborates the hypothesis that severe climate deterioration contributed to the decline of the Indus Civilisation about 3.9 ka BP. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{RiedelStebichAnoopetal.2015, author = {Riedel, Nils and Stebich, Martina and Anoop, Ambili and Basavaiah, Nathani and Menzel, Philip and Prasad, Sushma and Sachse, Dirk and Sarkar, Saswati and Wiesner, Martin}, title = {Modern pollen vegetation relationships in a dry deciduous monsoon forest: A case study from Lonar Crater Lake, central India}, series = {Quaternary international : the journal of the International Union for Quaternary Research}, volume = {371}, journal = {Quaternary international : the journal of the International Union for Quaternary Research}, publisher = {Elsevier}, address = {Oxford}, issn = {1040-6182}, doi = {10.1016/j.quaint.2015.01.046}, pages = {268 -- 279}, year = {2015}, abstract = {As part of ongoing research on Holocene lacustrine sediments of Lonar Crater Lake (central India), pollen assemblages in lake surface sediment and soil samples were studied to unravel pollenevegetation relationships, including pollen transport processes in tropical dry deciduous forest vegetation. Furthermore, palynological results were compared with geochemical proxies and spatial features of the lake sediments and the vegetation. The obtained data reveal strong differences in pollen assemblages and pollen concentrations between and within the studied trapping media. Local arboreal vegetation is adequately represented in the soil samples, but is less represented in the lake surface sediment samples. The composition of the lacustrine pollen assemblages is mainly influenced by patterns of transport through surface and channel runoff. Besides the relevance of our new data for reliable interpretation of fossil pollen spectra extracted from Lonar sediment cores, the results of this study are of general importance for the understanding of Quaternary pollen assemblages from tropical lacustrine archives, as well as for the implementation and selection of suitable approaches for quantitative pollen based environmental reconstructions in south Asia and beyond. (C) 2015 Elsevier Ltd and INQUA. All rights reserved.}, language = {en} } @article{SarkarPrasadWilkesetal.2015, author = {Sarkar, Saswati and Prasad, Sushma and Wilkes, Heinz and Riedel, Nils and Stebich, Martina and Basavaiah, Nathani and Sachse, Dirk}, title = {Monsoon source shifts during the drying mid-Holocene: Biomarker isotope based evidence from the core 'monsoon zone' (CMZ) of India}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {123}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2015.06.020}, pages = {144 -- 157}, year = {2015}, abstract = {A better understanding of past variations of the Indian Summer Monsoon (ISM), that plays a vital role for the still largely agro-based economy in India, can lead to a better assessment of its potential impact under global climate change scenarios. However, our knowledge of spatiotemporal patterns of ISM strength is limited due to the lack of high-resolution, continental paleohydrological records. Here, we reconstruct centennial-scale hydrological variability during the Holocene associated to changes in the intensity of the ISM based on a record of lipid biomarker abundances and compound-specific stable isotopic composition of a 10 m long sediment core from saline alkaline Lonar Lake, situated in the core 'monsoon zone' of central India. We identified three main periods of distinct hydrology during the Holocene in central India. The period between 10.1 and 6 cal ka BP was likely the wettest during the Holocene. Lower average chain length (ACL) index values (29.4-28.6) and negative delta C-13(wax) values (-34.8 parts per thousand to -27.8 parts per thousand) of leaf wax n-alkanes indicate the dominance of woody C-3 vegetation in the catchment, and negative delta D-wax values (concentration weighted average) (-171 parts per thousand to -147 parts per thousand) suggest a wet period due to an intensified monsoon. After 6 cal ka BP, a gradual shift to less negative delta C-13(wax) values (particularly for the grass derived n-C-31) and appearance of the triterpene lipid tetrahymanol, generally considered as a marker for salinity and water column stratification, mark the onset of drier conditions. At 5.1 cal ka BP an increasing flux of leaf wax n-alkanes along with the highest flux of tetrahymanol indicate a major lowering of the lake level. Between 4.8 and 4 cal ka BP, we find evidence for a transition to arid conditions, indicated by high and strongly variable tetrahymanol flux. In addition, a pronounced shift to less negative delta C-13(wax) values, in particular for n-C-31 (-25.2 parts per thousand to -22.8 parts per thousand), during this period indicates a change of dominant vegetation to C-4 grasses. In agreement with other proxy data, such as deposition of evaporite minerals, we interpret this period to reflect the driest conditions in the region during the last 10.1 ka. This transition led to protracted late Holocene arid conditions after 4 ka with the presence of a permanent saline lake, supported by the sustained presence of tetrahymanol and more positive average delta D-wax values (-122 parts per thousand to -141 parts per thousand). A late Holocene peak of cyanobacterial biomarker input at 1.3 cal ka BP might represent an event of lake eutrophication, possibly due to human impact and the onset of cattle/livestock farming in the catchment. A unique feature of our record is the presence of a distinct transitional period between 4.8 and 4 cal ka BP, which was characterized by some of the most negative delta D-wax values during the Holocene (up to -180 parts per thousand), when all other proxy data indicate the driest conditions during the Holocene. These negative delta D-wax values can as such most reasonably be explained by a shift in moisture source area and/or pathways or rainfall seasonality during this transitional period. We hypothesize that orbital induced weakening of the summer solar insolation and associated reorganization of the general atmospheric circulation, as a possible southward displacement of the tropical rainbelt, led to an unstable hydroclimate in central India between 4.8 and 4 ka.}, language = {en} } @article{SarkarWilkesPrasadetal.2014, author = {Sarkar, Saswati and Wilkes, Heinz and Prasad, Sushma and Brauer, Achim and Riedel, Nils and Stebich, Martina and Basavaiah, Nathani and Sachse, Dirk}, title = {Spatial heterogeneity in lipid biomarker distributions in the catchment and sediments of a crater lake in central India}, series = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, volume = {66}, journal = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0146-6380}, doi = {10.1016/j.orggeochem.2013.11.009}, pages = {125 -- 136}, year = {2014}, abstract = {The basin-scale spatial variability in lipid biomarker proxies in lacustrine sediments, which are established tools for studying continental environmental change, has rarely been examined. It is often implicitly assumed that a lake sediment core provides an average integral of catchment sources. Here we evaluated the distribution of lipid biomarkers in a modern ecosystem and compared it with the sedimentary record. We analyzed lipid biomarkers in terrestrial and aquatic organisms and in lake surface sediments from 17 locations within the saline-alkaline Lonar crater lake in central India. Terrestrial vegetation and lake surface sediments were characterized by relatively high average chain length (ACL) index values (29.6-32.8) of leaf wax n-alkanes, consistent with suggestions that plants in drier and warmer climates produce longer chain alkyl lipids than plants in cooler and humid areas. A heterogeneous spatial distribution of ACL values in lake surface sediments was found: at locations away from the shore, the values were highest (31 or more), possibly indicating different sources and/or transport of terrestrial biomarkers. In floating, benthic microbial mats and surface sediment, n-heptadecane, carotenoids, diploptene, phytol and tetrahymanol occurred in large amounts. Interestingly, these biomarkers of a unique bacterial community were found in substantially higher concentrations in nearshore sediment samples. We suggest that human influence and subsequent nutrient supply resulted in increased primary productivity, leading to an unusually high concentration of tetrahymanol in the nearshore sediments. In summary, the data showed that substantial heterogeneity existed within the lake, but leaf wax n-alkanes in a core from the center of the lake represented an integral of catchment conditions. However, lake level fluctuation may potentially affect aquatic lipid biomarker distributions in lacustrine sediments, in addition to source changes.}, language = {en} }