@article{SchattauerReinholdAlbrechtetal.2012, author = {Schattauer, Sylvia and Reinhold, Beate and Albrecht, Steve and Fahrenson, Christoph and Schubert, Marcel and Janietz, Silvia and Neher, Dieter}, title = {Influence of sintering on the structural and electronic properties of TiO2 nanoporous layers prepared via a non-sol-gel approach}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {290}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {18}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-012-2708-9}, pages = {1843 -- 1854}, year = {2012}, abstract = {In this work, a nonaqueous method is used to fabricate thin TiO2 layers. In contrast to the common aqueous sol-gel approach, our method yields layers of anatase nanocrystallites already at low temperature. Raman spectroscopy, electron microscopy and charge extraction by linearly increasing voltage are employed to study the effect of sintering temperature on the structural and electronic properties of the nanocrystalline TiO2 layer. Raising the sintering temperature from 120 to 600 A degrees C is found to alter the chemical composition, the layer's porosity and its surface but not the crystal phase. The room temperature mobility increases from 2 x 10(-6) to 3 x 10(-5) cm(2)/Vs when the sinter temperature is increased from 400 to 600 A degrees C, which is explained by a better interparticle connectivity. Solar cells comprising such nanoporous TiO2 layers and a soluble derivative of cyclohexylamino-poly(p-phenylene vinylene) were fabricated and studied with regard to their structural and photovoltaic properties. We found only weak polymer infiltration into the oxide layer for sintering temperatures up to 550 A degrees C, while the polymer penetrated deeply into titania layers that were sintered at 600 A degrees C. Best photovoltaic performance was reached with a nanoporous TiO2 film sintered at 550 A degrees C, which yielded a power conversion efficiency of 0.5 \%. Noticeably, samples with the TiO2 layer dried at 120 A degrees C displayed short-circuit currents and open circuit voltages only about 15-20 \% lower than for the most efficient devices, meaning that our nonaqueous route yields titania layers with reasonable transport properties even at low sintering temperatures.}, language = {en} } @article{ReinholdGeueHuberetal.2009, author = {Reinhold, Beate and Geue, Thomas and Huber, Patrick and Sant, Tushar and Pietsch, Ullrich and Sztucki, Michael}, title = {In situ and ex situ SAXS investigation of colloidal sedimentation onto laterally patterned support}, issn = {0743-7463}, doi = {10.1021/La803078b}, year = {2009}, abstract = {We report on in situ investigations of colloidal ordering during gravity sedimentation from a colloidal suspension onto a prepatterned support using a polymeric surface relief grating (SRG) as the support. The ordering of colloids with a diameter of 420 nm was investigated by means of grazing-incidence small-angle X-ray scattering (GISAXS) and transmission SAXS using a preparation cell guaranteeing stable temperature and humidity. GISAXS was used for in situ monitoring of the time evolution of colloidal ordering within the whole illuminated sample area. The onset of ordering was indicated by the increase of integrated intensity within a small time frame shortly before complete evaporation of the dispersant. Single domains of coated samples were investigated ex situ by SAXS in transmission geometry where the irradiated sample area was 200 x 200 mu m(2) only. Domains with the typical size of a few millimeters were observed varying in orientation and crystallographic structure for various positions at the sample. They were mainly oriented along the grooves of the grating, confirming the influence of the underlying grating on colloidal ordering.}, language = {en} }