@article{PutraNeuberReichetzederetal.2014, author = {Putra, Sulistyo Emantoko Dwi and Neuber, Corinna and Reichetzeder, Christoph and Hocher, Berthold and Kleuser, Burkhard}, title = {Analysis of genomic DNA methylation levels in human placenta using liquid Chromatography-Electrospray ionization tandem mass spectrometry}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {33}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, number = {4}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000358666}, pages = {945 -- 952}, year = {2014}, abstract = {Background: DNA-methylation is a common epigenetic tool which plays a crucial role in gene regulation and is essential for cell differentiation and embryonic development. The placenta is an important organ where gene activity can be regulated by epigenetic DNA modifications, including DNA methylation. This is of interest as, the placenta is the interface between the fetus and its environment, the mother. Exposure to environmental toxins and nutrition during pregnancy may alter DNA methylation of the placenta and subsequently placental function and as a result the phenotype of the offspring. The aim of this study was to develop a reliable method to quantify DNA methylation in large clinical studies. This will be a tool to analyze the degree of DNA methylation in the human placenta in relationship to clinical readouts. Methods: Liquid chromatography-electrospray ionization/multi-stage mass spectrometry (LC-ESI/MS/MS) technique was used for the quantification of the 5dmC/dG ratio in placentas from 248 healthy pregnancies. We were able to demonstrate that this method is a reliable and stable way to determine global placental DNA methylation in large clinical trials. Results/Conclusion: The degree of placental DNA methylation seen in our pilot study varies substantially from 2\% to 5\%. The clinical implications of this variation need to be demonstrated in adequately powered large studies.}, language = {en} } @article{ReichetzederPutraPfabetal.2016, author = {Reichetzeder, Christoph and Putra, S. E. Dwi and Pfab, T. and Slowinski, T. and Neuber, Corinna and Kleuser, Burkhard and Hocher, Berthold}, title = {Increased global placental DNA methylation levels are associated with gestational diabetes}, series = {Clinical epigenetics}, volume = {8}, journal = {Clinical epigenetics}, publisher = {BioMed Central}, address = {London}, issn = {1868-7083}, doi = {10.1186/s13148-016-0247-9}, pages = {10}, year = {2016}, abstract = {Background: Gestational diabetes mellitus (GDM) is associated with adverse pregnancy outcomes. It is known that GDM is associated with an altered placental function and changes in placental gene regulation. More recent studies demonstrated an involvement of epigenetic mechanisms. So far, the focus regarding placental epigenetic changes in GDM was set on gene-specific DNA methylation analyses. Studies that robustly investigated placental global DNA methylation are lacking. However, several studies showed that tissue-specific alterations in global DNA methylation are independently associated with type 2 diabetes. Thus, the aim of this study was to characterize global placental DNA methylation by robustly measuring placental DNA 5-methylcytosine (5mC) content and to examine whether differences in placental global DNA methylation are associated with GDM. Methods: Global DNA methylation was quantified by the current gold standard method, LC-MS/MS. In total, 1030 placental samples were analyzed in this single-center birth cohort study. Results: Mothers with GDM displayed a significantly increased global placental DNA methylation (3.22 +/- 0.63 vs. 3.00 +/- 0.46 \%; p = 0.013; +/- SD). Bivariate logistic regression showed a highly significant positive correlation between global placental DNA methylation and the presence of GDM (p = 0.0009). Quintile stratification according to placental DNA 5mC levels revealed that the frequency of GDM was evenly distributed in quintiles 1-4 (2.9-5.3 \%), whereas the frequency in the fifth quintile was significantly higher (10.7 \%; p = 0.003). Bivariate logistic models adjusted for maternal age, BMI, ethnicity, recurrent miscarriages, and familiar diabetes predisposition clearly demonstrated an independent association between global placental DNA hypermethylation and GDM. Furthermore, an ANCOVA model considering known predictors of DNA methylation substantiated an independent association between GDM and placental DNA methylation. Conclusions: This is the first study that employed a robust quantitative assessment of placental global DNA methylation in over a thousand placental samples. The study provides large scale evidence that placental global DNA hypermethylation is associated with GDM, independent of established risk factors.}, language = {en} } @article{LiLuReichetzederetal.2016, author = {Li, Jian and Lu, Yong Ping and Reichetzeder, Christoph and Kalk, Philipp and Kleuser, Burkhard and Adamski, Jerzy and Hocher, Berthold}, title = {Maternal PCaaC38:6 is Associated With Preterm Birth - a Risk Factor for Early and Late Adverse Outcome of the Offspring}, series = {Journal of European public policy}, volume = {41}, journal = {Journal of European public policy}, publisher = {Karger}, address = {Basel}, issn = {1420-4096}, doi = {10.1159/000443428}, pages = {250 -- 257}, year = {2016}, abstract = {Background/Aims: Preterm birth (PTB) and low birth weight (LBW) significantly influence mortality and morbidity of the offspring in early life and also have long-term consequences in later life. A better understanding of the molecular mechanisms of preterm birth could provide new insights regarding putative preventive strategies. Metabolomics provides a powerful analytic tool to readout complex interactions between genetics, environment and health and may serve to identify relevant biomarkers. In this study, the association between 163 targeted maternal blood metabolites and gestational age was investigated in order to find candidate biomarkers for PTB. Methods: Five hundred twenty-three women were included into this observational study. Maternal blood was obtained before delivery. The concentration of 163 maternal serum metabolites was measured by flow injection tandem mass spectrometry. To find putative biomarkers for preterm birth, a three-step analysis was designed: bivariate correlation analysis followed by multivariable regression analysis and a comparison of mean values among gestational age groups. Results: Bivariate correlation analysis showed that 2 acylcarnitines (C16:2, C2), 1 amino acids (xLeu), 8 diacyl-PCs (PCaaC36:4, PCaaC38:4, PCaaC38:5, PCaaC38:6, PCaaC40:4, PCaaC40:5, PCaaC40:6, PCaaC42:4), and 1 Acylalkyl-PCs (PCaeC40:5) were inversely correlated with gestational age. Multivariable regression analysis confounded for PTB history, maternal body mass index (BMI) before pregnancy, systolic blood pressure at the third trimester, and maternal body weight at the third trimester, showed that the diacyl-PC PCaaC38:6 was the only metabolite inversely correlated with gestational age. Conclusions: Maternal blood concentrations of PCaaC38:6 are independently associated with gestational age. (C) 2016 The Author(s) Published by S. Karger AG, Basel}, language = {en} } @misc{HocherReichetzederDwiPutraetal.2017, author = {Hocher, Berthold and Reichetzeder, Christoph and Dwi Putra, Sulistyo Emantoko and Slowinski, Torsten and Neuber, Corinna and Kleuser, Burkhard and Pfab, Thiemo}, title = {Increased global placental DNA methylation levels are associated with gestational diabetes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400914}, pages = {10}, year = {2017}, abstract = {Background: Gestational diabetes mellitus (GDM) is associated with adverse pregnancy outcomes. It is known that GDM is associated with an altered placental function and changes in placental gene regulation. More recent studies demonstrated an involvement of epigenetic mechanisms. So far, the focus regarding placental epigenetic changes in GDM was set on gene-specific DNA methylation analyses. Studies that robustly investigated placental global DNA methylation are lacking. However, several studies showed that tissue-specific alterations in global DNA methylation are independently associated with type 2 diabetes. Thus, the aim of this study was to characterize global placental DNA methylation by robustly measuring placental DNA 5-methylcytosine (5mC) content and to examine whether differences in placental global DNA methylation are associated with GDM. Methods: Global DNA methylation was quantified by the current gold standard method, LC-MS/MS. In total, 1030 placental samples were analyzed in this single-center birth cohort study. Results: Mothers with GDM displayed a significantly increased global placental DNA methylation (3.22 ± 0.63 vs. 3.00 ± 0.46 \%; p = 0.013; ±SD). Bivariate logistic regression showed a highly significant positive correlation between global placental DNA methylation and the presence of GDM (p = 0.0009). Quintile stratification according to placental DNA 5mC levels revealed that the frequency of GDM was evenly distributed in quintiles 1-4 (2.9-5.3 \%), whereas the frequency in the fifth quintile was significantly higher (10.7 \%; p = 0.003). Bivariate logistic models adjusted for maternal age, BMI, ethnicity, recurrent miscarriages, and familiar diabetes predisposition clearly demonstrated an independent association between global placental DNA hypermethylation and GDM. Furthermore, an ANCOVA model considering known predictors of DNA methylation substantiated an independent association between GDM and placental DNA methylation. Conclusions: This is the first study that employed a robust quantitative assessment of placental global DNA methylation in over a thousand placental samples. The study provides large scale evidence that placental global DNA hypermethylation is associated with GDM, independent of established risk factors.}, language = {en} } @article{LuReichetzederPrehnetal.2018, author = {Lu, Yong-Ping and Reichetzeder, Christoph and Prehn, Cornelia and von Websky, Karoline and Slowinski, Torsten and Chen, You-Peng and Yin, Liang-Hong and Kleuser, Burkhard and Yang, Xue-Song and Adamski, Jerzy and Hocher, Berthold}, title = {Fetal serum metabolites are independently associated with Gestational diabetes mellitus}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {45}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, number = {2}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000487119}, pages = {625 -- 638}, year = {2018}, abstract = {Background/Aims: Gestational diabetes (GDM) might be associated with alterations in the metabolomic profile of affected mothers and their offspring. Until now, there is a paucity of studies that investigated both, the maternal and the fetal serum metabolome in the setting of GDM. Mounting evidence suggests that the fetus is not just passively affected by gestational disease but might play an active role in it. Metabolomic studies performed in maternal blood and fetal cord blood could help to better discern distinct fetal from maternal disease interactions. Methods: At the time of birth, serum samples from mothers and newborns (cord blood samples) were collected and screened for 163 metabolites utilizing tandem mass spectrometry. The cohort consisted of 412 mother/child pairs, including 31 cases of maternal GDM. Results: An initial non-adjusted analysis showed that eight metabolites in the maternal blood and 54 metabolites in the cord blood were associated with GDM. After Benjamini-Hochberg (BH) procedure and adjustment for confounding factors for GDM, fetal phosphatidylcholine acyl-alkyl C 32:1 and proline still showed an independent association with GDM. Conclusions: This study found metabolites in cord blood which were associated with GDM, even after adjustment for established risk factors of GDM. To the best of our knowledge, this is the first study demonstrating an independent association between fetal serum metabolites and maternal GDM. Our findings might suggest a potential effect of the fetal metabolome on maternal GDM. (c) 2018 The Author(s) Published by S. Karger AG, Basel}, language = {en} } @misc{LuReichetzederPrehnetal.2018, author = {Lu, Yong-Ping and Reichetzeder, Christoph and Prehn, Cornelia and von Websky, Karoline and Slowinski, Torsten and Chen, You-Peng and Yin, Liang-Hong and Kleuser, Burkhard and Yang, Xue-Song and Adamski, Jerzy and Hocher, Berthold}, title = {Fetal serum metabolites are independently associated with Gestational diabetes mellitus}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {637}, issn = {1866-8372}, doi = {10.25932/publishup-42458}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424585}, pages = {14}, year = {2018}, abstract = {Background/Aims: Gestational diabetes (GDM) might be associated with alterations in the metabolomic profile of affected mothers and their offspring. Until now, there is a paucity of studies that investigated both, the maternal and the fetal serum metabolome in the setting of GDM. Mounting evidence suggests that the fetus is not just passively affected by gestational disease but might play an active role in it. Metabolomic studies performed in maternal blood and fetal cord blood could help to better discern distinct fetal from maternal disease interactions. Methods: At the time of birth, serum samples from mothers and newborns (cord blood samples) were collected and screened for 163 metabolites utilizing tandem mass spectrometry. The cohort consisted of 412 mother/child pairs, including 31 cases of maternal GDM. Results: An initial non-adjusted analysis showed that eight metabolites in the maternal blood and 54 metabolites in the cord blood were associated with GDM. After Benjamini-Hochberg (BH) procedure and adjustment for confounding factors for GDM, fetal phosphatidylcholine acyl-alkyl C 32:1 and proline still showed an independent association with GDM. Conclusions: This study found metabolites in cord blood which were associated with GDM, even after adjustment for established risk factors of GDM. To the best of our knowledge, this is the first study demonstrating an independent association between fetal serum metabolites and maternal GDM. Our findings might suggest a potential effect of the fetal metabolome on maternal GDM. (c) 2018 The Author(s) Published by S. Karger AG, Basel}, language = {en} } @article{HasanvonWebskyReichetzederetal.2019, author = {Hasan, Ahmed Abdallah Abdalrahman Mohamed and von Websky, Karoline and Reichetzeder, Christoph and Tsuprykov, Oleg and Gaballa, Mohamed Mahmoud Salem Ahmed and Guo, Jingli and Zeng, Shufei and Delic, Denis and Tammen, Harald and Klein, Thomas and Kleuser, Burkhard and Hocher, Berthold}, title = {Mechanisms of GLP-1 receptor-independent renoprotective effects of the dipeptidyl peptidase type 4 inhibitor linagliptin in GLP-1 receptor knockout mice with 5/6 nephrectomy}, series = {Kidney international : official journal of the International Society of Nephrology}, volume = {95}, journal = {Kidney international : official journal of the International Society of Nephrology}, number = {6}, publisher = {Elsevier}, address = {New York}, issn = {0085-2538}, doi = {10.1016/j.kint.2019.01.010}, pages = {1373 -- 1388}, year = {2019}, abstract = {Dipeptidyl peptidase type 4 (DPP-4) inhibitors were reported to have beneficial effects in experimental models of chronic kidney disease. The underlying mechanisms are not completely understood. However, these effects could be mediated via the glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP1R) pathway. Here we investigated the renal effects of the DPP-4 inhibitor linagliptin in Glp1r-/- knock out and wild-type mice with 5/6 nephrectomy (5/6Nx). Mice were allocated to groups: sham + wild type + placebo; 5/6Nx+ wild type + placebo; 5/6Nx+ wild type + linagliptin; sham + knock out+ placebo; 5/6Nx + knock out+ placebo; 5/6Nx + knock out+ linagliptin. 5/6Nx caused the development of renal interstitial fibrosis, significantly increased plasma cystatin C and creatinine levels and suppressed renal gelatinase/collagenase, matrix metalloproteinase-1 and -13 activities; effects counteracted by linagliptin treatment in wildtype and Glp1r-/- mice. Two hundred ninety-eight proteomics signals were differentially regulated in kidneys among the groups, with 150 signals specific to linagliptin treatment as shown by mass spectrometry. Treatment significantly upregulated three peptides derived from collagen alpha-1(I), thymosin beta 4 and heterogeneous nuclear ribonucleoprotein Al (HNRNPA1) and significantly downregulated one peptide derived from Y box binding protein-1 (YB-1). The proteomics results were further confirmed using western blot and immunofluorescence microscopy. Also, 5/6Nx led to significant up-regulation of renal transforming growth factor-beta 1 and pSMAD3 expression in wild type mice and linagliptin significantly counteracted this up-regulation in wild type and GIplr-/- mice. Thus, the renoprotective effects of linagliptin cannot solely be attributed to the GLP-1/GLP1R pathway, highlighting the importance of other signaling pathways (collagen I homeostasis, HNRNPA1,YB-1,thymosin beta 4 and TGF-beta 1) influenced by DPP-4 inhibition.}, language = {en} } @misc{DwiPutraReichetzederHasanetal.2020, author = {Dwi Putra, Sulistyo Emantoko and Reichetzeder, Christoph and Hasan, Ahmed Abdallah Abdalrahman Mohamed and Slowinski, Torsten and Chu, Chang and Kr{\"a}mer, Bernhard K. and Kleuser, Burkhard and Hocher, Berthold}, title = {Being born large for gestational age is associated with increased global placental DNA methylation}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51628}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516289}, pages = {12}, year = {2020}, abstract = {Being born small (SGA) or large for gestational age (LGA) is associated with adverse birth outcomes and metabolic diseases in later life of the offspring. It is known that aberrations in growth during gestation are related to altered placental function. Placental function is regulated by epigenetic mechanisms such as DNA methylation. Several studies in recent years have demonstrated associations between altered patterns of DNA methylation and adverse birth outcomes. However, larger studies that reliably investigated global DNA methylation are lacking. The aim of this study was to characterize global placental DNA methylation in relationship to size for gestational age. Global DNA methylation was assessed in 1023 placental samples by LC-MS/MS. LGA offspring displayed significantly higher global placental DNA methylation compared to appropriate for gestational age (AGA; p<0.001). ANCOVA analyses adjusted for known factors impacting on DNA methylation demonstrated an independent association between placental global DNA methylation and LGA births (p<0.001). Tertile stratification according to global placental DNA methylation levels revealed a significantly higher frequency of LGA births in the third tertile. Furthermore, a multiple logistic regression analysis corrected for known factors influencing birth weight highlighted an independent positive association between global placental DNA methylation and the frequency of LGA births (p=0.001).}, language = {en} } @article{DwiPutraReichetzederHasanetal.2020, author = {Dwi Putra, Sulistyo Emantoko and Reichetzeder, Christoph and Hasan, Ahmed Abdallah Abdalrahman Mohamed and Slowinski, Torsten and Chu, Chang and Kr{\"a}mer, Bernhard K. and Kleuser, Burkhard and Hocher, Berthold}, title = {Being born large for gestational age is associated with increased global placental DNA methylation}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-57725-0}, pages = {1 -- 10}, year = {2020}, abstract = {Being born small (SGA) or large for gestational age (LGA) is associated with adverse birth outcomes and metabolic diseases in later life of the offspring. It is known that aberrations in growth during gestation are related to altered placental function. Placental function is regulated by epigenetic mechanisms such as DNA methylation. Several studies in recent years have demonstrated associations between altered patterns of DNA methylation and adverse birth outcomes. However, larger studies that reliably investigated global DNA methylation are lacking. The aim of this study was to characterize global placental DNA methylation in relationship to size for gestational age. Global DNA methylation was assessed in 1023 placental samples by LC-MS/MS. LGA offspring displayed significantly higher global placental DNA methylation compared to appropriate for gestational age (AGA; p<0.001). ANCOVA analyses adjusted for known factors impacting on DNA methylation demonstrated an independent association between placental global DNA methylation and LGA births (p<0.001). Tertile stratification according to global placental DNA methylation levels revealed a significantly higher frequency of LGA births in the third tertile. Furthermore, a multiple logistic regression analysis corrected for known factors influencing birth weight highlighted an independent positive association between global placental DNA methylation and the frequency of LGA births (p=0.001).}, language = {en} }