@article{PoustkaZohselBlomeyeretal.2015, author = {Poustka, Luise and Zohsel, Katrin and Blomeyer, Dorothea and Jennen-Steinmetz, Christine and Schmid, Brigitte and Trautmann-Villalba, Patricia and Hohmann, Sarah and Becker, Katja and Esser, G{\"u}nter and Schmidt, Martin H. and Brandeis, Daniel and Banaschewski, Tobias and Laucht, Manfred}, title = {Interacting effects of maternal responsiveness, infant regulatory problems and dopamine D4 receptor gene in the development of dysregulation during childhood: A longitudinal analysis}, series = {Journal of psychiatric research}, volume = {70}, journal = {Journal of psychiatric research}, publisher = {Elsevier}, address = {Oxford}, issn = {0022-3956}, doi = {10.1016/j.psychires.2015.08.018}, pages = {83 -- 90}, year = {2015}, abstract = {Recent longitudinal studies have indicated that affective and behavioral dysregulation in childhood is associated with an increased risk for various negative outcomes in later life. However, few studies to date have examined early mechanisms preceding dysregulation during early childhood. Aim of this study was to elucidate early mechanisms relating to dysregulation in later life using data from an epidemiological cohort study on the long-term outcome of early risk factors from birth to adulthood. At age 3 months, mothers and infants were videotaped during a nursing and playing situation. Maternal responsiveness was evaluated by trained raters. Infant regulatory problems were assessed on the basis of a parent interview and direct observation by trained raters. At age 8 and 11 years, 290 children (139 males) were rated on the Child Behavior Checklist (CBCL). Additionally, participants were genotyped for the dopamine D4 receptor (DRD4) exon 3 VNTR polymorphism. A significant three-way interaction between maternal responsiveness, DRD4 genotype and infant regulatory problems was detected predicting the CBCL-dysregulation profile (CBCL-DP). Carriers of the DRD4 7r allele with regulatory problems at age 3 months showed significantly more behavior problems associated with the CBCL-DP during childhood when exposed to less maternal responsiveness. In contrast, no effect of maternal responsiveness was observed in DRD4 7r carriers without infant regulatory problems and in non-carriers of the DRD4 7r allele. This prospective longitudinal study extends earlier findings regarding the association of the CBCL-DP with early parenting and later psychopathology, introducing both DRD4 genotype and infant regulatory problems as important moderators. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{BuchmannZohselBlomeyeretal.2014, author = {Buchmann, Arlette F. and Zohsel, Katrin and Blomeyer, Dorothea and Hohm, Erika and Hohmann, Sarah and Jennen-Steinmetz, Christine and Treutlein, Jens and Becker, Katja and Banaschewski, Tobias and Schmidt, Martin H. and Esser, G{\"u}nter and Brandeis, Daniel and Poustka, Luise and Zimmermann, Ulrich S. and Laucht, Manfred}, title = {Interaction between prenatal stress and dopamine D4 receptor genotype in predicting aggression and cortisol levels in young adults}, series = {Psychopharmacology}, volume = {231}, journal = {Psychopharmacology}, number = {16}, publisher = {Springer}, address = {New York}, issn = {0033-3158}, doi = {10.1007/s00213-014-3484-7}, pages = {3089 -- 3097}, year = {2014}, abstract = {Considerable evidence suggests that genetic factors combine with environmental influences to impact on the development of aggressive behavior. A genetic variant that has repeatedly been reported to render individuals more sensitive to the presence of adverse experiences, including stress exposure during fetal life, is the seven-repeat allele of the dopamine D4 receptor (DRD4) gene. The present investigation concentrated on the interplay of prenatal maternal stress and DRD4 genotype in predicting self-reported aggression in young adults. As disruption of the hypothalamic-pituitary-adrenal system has been discussed as a pathophysiological pathway to aggression, cortisol stress reactivity was additionally examined. As part of an epidemiological cohort study, prenatal maternal stress was assessed by maternal interview 3 months after childbirth. Between the ages of 19 and 23 years, 298 offspring (140 males, 158 females) completed the Young Adult Self-Report to measure aggressive behavior and were genotyped for the DRD4 gene. At 19 years, 219 participants additionally underwent the Trier Social Stress Test to determine cortisol reactivity. Extending earlier findings with respect to childhood antisocial behavior, the results revealed that, under conditions of higher prenatal maternal stress, carriers of the DRD4 seven-repeat allele displayed more aggression in adulthood (p = 0.032). Moreover, the same conditions which seemed to promote aggression were found to predict attenuated cortisol secretion (p = 0.028). This is the first study to indicate a long-term impact of prenatal stress exposure on the cortisol stress response depending on DRD4 genotype.}, language = {en} } @article{KaminskiSchlagenhaufRappetal.2018, author = {Kaminski, Jakob A. and Schlagenhauf, Florian and Rapp, Michael Armin and Awasthi, Swapnil and Ruggeri, Barbara and Deserno, Lorenz and Banaschewski, Tobias and Bokde, Arun L. W. and Bromberg, Uli and B{\"u}chel, Christian and Quinlan, Erin Burke and Desrivieres, Sylvane and Flor, Herta and Frouin, Vincent and Garavan, Hugh and Gowland, Penny and Ittermann, Bernd and Martinot, Jean-Luc and Martinot, Marie-Laure Paillere and Nees, Frauke and Orfanos, Dimitri Papadopoulos and Paus, Tomas and Poustka, Luise and Smolka, Michael N. and Fr{\"o}hner, Juliane H. and Walter, Henrik and Whelan, Robert and Ripke, Stephan and Schumann, Gunter and Heinz, Andreas}, title = {Epigenetic variance in dopamine D2 receptor}, series = {Translational Psychiatry}, volume = {8}, journal = {Translational Psychiatry}, publisher = {Nature Publ. Group}, address = {New York}, organization = {IMAGEN Consortium}, issn = {2158-3188}, doi = {10.1038/s41398-018-0222-7}, pages = {11}, year = {2018}, abstract = {Genetic and environmental factors both contribute to cognitive test performance. A substantial increase in average intelligence test results in the second half of the previous century within one generation is unlikely to be explained by genetic changes. One possible explanation for the strong malleability of cognitive performance measure is that environmental factors modify gene expression via epigenetic mechanisms. Epigenetic factors may help to understand the recent observations of an association between dopamine-dependent encoding of reward prediction errors and cognitive capacity, which was modulated by adverse life events. The possible manifestation of malleable biomarkers contributing to variance in cognitive test performance, and thus possibly contributing to the "missing heritability" between estimates from twin studies and variance explained by genetic markers, is still unclear. Here we show in 1475 healthy adolescents from the IMaging and GENetics (IMAGEN) sample that general IQ (gIQ) is associated with (1) polygenic scores for intelligence, (2) epigenetic modification of DRD2 gene, (3) gray matter density in striatum, and (4) functional striatal activation elicited by temporarily surprising reward-predicting cues. Comparing the relative importance for the prediction of gIQ in an overlapping subsample, our results demonstrate neurobiological correlates of the malleability of gIQ and point to equal importance of genetic variance, epigenetic modification of DRD2 receptor gene, as well as functional striatal activation, known to influence dopamine neurotransmission. Peripheral epigenetic markers are in need of confirmation in the central nervous system and should be tested in longitudinal settings specifically assessing individual and environmental factors that modify epigenetic structure.}, language = {en} } @misc{KaminskiSchlagenhaufRappetal.2018, author = {Kaminski, Jakob and Schlagenhauf, Florian and Rapp, Michael Armin and Awasthi, Swapnil and Ruggeri, Barbara and Deserno, Lorenz and Laura, Daedelow and Banaschewski, Tobias and Bokde, Arun and Quinlan, Erin Burke and Buechel, Christian and Bromberg, Uli and Desrivieres, Sylvane and Flor, Herta and Frouin, Vincent and Garavan, Hugh and Gowland, Penny and Ittermann, Bernd and Martinot, Jean-Luc and Martinot, Marie-Laure Paillere and Nees, Frauke and Orfanos, Dimitri Papadopoulos and Paus, Tomas and Poustka, Luise and Smolka, Michael and Froehner, Juliane and Walter, Henrik and Whelan, Robert and Ripke, Stephan and Schumann, Gunter and Heinz, Andreas}, title = {Variance in Dopaminergic Markers}, series = {Biological psychiatry : a journal of psychiatric neuroscience and therapeutics ; a publication of the Society of Biological Psychiatry}, volume = {83}, journal = {Biological psychiatry : a journal of psychiatric neuroscience and therapeutics ; a publication of the Society of Biological Psychiatry}, number = {9}, publisher = {Elsevier}, address = {New York}, organization = {IMAGEN Consortium}, issn = {0006-3223}, doi = {10.1016/j.biopsych.2018.02.311}, pages = {S118 -- S118}, year = {2018}, language = {en} } @misc{KaminskiSchlagenhaufRappetal.2018, author = {Kaminski, Jakob A. and Schlagenhauf, Florian and Rapp, Michael Armin and Awasthi, Swapnil and Ruggeri, Barbara and Deserno, Lorenz and Banaschewski, Tobias and Bokde, Arun L. W. and Bromberg, Uli and B{\"u}chel, Christian and Quinlan, Erin Burke and Desrivi{\`e}res, Sylvane and Flor, Herta and Frouin, Vincent and Garavan, Hugh and Gowland, Penny and Ittermann, Bernd and Martinot, Jean-Luc and Paill{\`e}re Martinot, Marie-Laure and Nees, Frauke and Papadopoulos Orfanos, Dimitri and Paus, Tom{\´a}š and Poustka, Luise and Smolka, Michael N. and Fr{\"o}hner, Juliane H. and Walter, Henrik and Whelan, Robert and Ripke, Stephan and Schumann, Gunter and Heinz, Andreas}, title = {Epigenetic variance in dopamine D2 receptor}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {950}, issn = {1866-8372}, doi = {10.25932/publishup-42568}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425687}, pages = {13}, year = {2018}, abstract = {Genetic and environmental factors both contribute to cognitive test performance. A substantial increase in average intelligence test results in the second half of the previous century within one generation is unlikely to be explained by genetic changes. One possible explanation for the strong malleability of cognitive performance measure is that environmental factors modify gene expression via epigenetic mechanisms. Epigenetic factors may help to understand the recent observations of an association between dopamine-dependent encoding of reward prediction errors and cognitive capacity, which was modulated by adverse life events. The possible manifestation of malleable biomarkers contributing to variance in cognitive test performance, and thus possibly contributing to the "missing heritability" between estimates from twin studies and variance explained by genetic markers, is still unclear. Here we show in 1475 healthy adolescents from the IMaging and GENetics (IMAGEN) sample that general IQ (gIQ) is associated with (1) polygenic scores for intelligence, (2) epigenetic modification of DRD2 gene, (3) gray matter density in striatum, and (4) functional striatal activation elicited by temporarily surprising reward-predicting cues. Comparing the relative importance for the prediction of gIQ in an overlapping subsample, our results demonstrate neurobiological correlates of the malleability of gIQ and point to equal importance of genetic variance, epigenetic modification of DRD2 receptor gene, as well as functional striatal activation, known to influence dopamine neurotransmission. Peripheral epigenetic markers are in need of confirmation in the central nervous system and should be tested in longitudinal settings specifically assessing individual and environmental factors that modify epigenetic structure.}, language = {en} }