@article{SramaKruegerYamaguchietal.2012, author = {Srama, Ralf and Krueger, H. and Yamaguchi, T. and Stephan, T. and Burchell, M. and Kearsley, A. T. and Sterken, V. and Postberg, F. and Kempf, S. and Gr{\"u}n, Eberhard and Altobelli, Nicolas and Ehrenfreund, P. and Dikarev, V. and Horanyi, M. and Sternovsky, Zoltan and Carpenter, J. D. and Westphal, A. and Gainsforth, Z. and Krabbe, A. and Agarwal, Jessica and Yano, H. and Blum, J. and Henkel, H. and Hillier, J. and Hoppe, P. and Trieloff, M. and Hsu, S. and Mocker, A. and Fiege, K. and Green, S. F. and Bischoff, A. and Esposito, F. and Laufer, R. and Hyde, T. W. and Herdrich, G. and Fasoulas, S. and Jaeckel, A. and Jones, G. and Jenniskens, P. and Khalisi, E. and Moragas-Klostermeyer, Georg and Spahn, Frank and Keller, H. U. and Frisch, P. and Levasseur-Regourd, A. C. and Pailer, N. and Altwegg, K. and Engrand, C. and Auer, S. and Silen, J. and Sasaki, S. and Kobayashi, M. and Schmidt, J. and Kissel, J. and Marty, B. and Michel, P. and Palumbo, P. and Vaisberg, O. and Baggaley, J. and Rotundi, A. and Roeser, H. P.}, title = {SARIM PLUS-sample return of comet 67P/CG and of interstellar matter}, series = {EXPERIMENTAL ASTRONOMY}, volume = {33}, journal = {EXPERIMENTAL ASTRONOMY}, number = {2-3}, publisher = {SPRINGER}, address = {DORDRECHT}, issn = {0922-6435}, doi = {10.1007/s10686-011-9285-7}, pages = {723 -- 751}, year = {2012}, abstract = {The Stardust mission returned cometary, interplanetary and (probably) interstellar dust in 2006 to Earth that have been analysed in Earth laboratories worldwide. Results of this mission have changed our view and knowledge on the early solar nebula. The Rosetta mission is on its way to land on comet 67P/Churyumov-Gerasimenko and will investigate for the first time in great detail the comet nucleus and its environment starting in 2014. Additional astronomy and planetary space missions will further contribute to our understanding of dust generation, evolution and destruction in interstellar and interplanetary space and provide constraints on solar system formation and processes that led to the origin of life on Earth. One of these missions, SARIM-PLUS, will provide a unique perspective by measuring interplanetary and interstellar dust with high accuracy and sensitivity in our inner solar system between 1 and 2 AU. SARIM-PLUS employs latest in-situ techniques for a full characterisation of individual micrometeoroids (flux, mass, charge, trajectory, composition()) and collects and returns these samples to Earth for a detailed analysis. The opportunity to visit again the target comet of the Rosetta mission 67P/Churyumov-Gerasimeenternko, and to investigate its dusty environment six years after Rosetta with complementary methods is unique and strongly enhances and supports the scientific exploration of this target and the entire Rosetta mission. Launch opportunities are in 2020 with a backup window starting early 2026. The comet encounter occurs in September 2021 and the reentry takes place in early 2024. An encounter speed of 6 km/s ensures comparable results to the Stardust mission.}, language = {en} } @article{SramaKempfMoragasKlostermeyeretal.2006, author = {Srama, Ralf and Kempf, S. and Moragas-Klostermeyer, Georg and Helfert, S. and Ahrens, T. J. and Altobelli, N. and Auer, S. and Beckmann, U. and Bradley, J. G. and Burton, M. and Dikarev, V. V. and Economou, T. and Fechtig, H. and Green, S. F. and Grande, M. and Havnes, O. and Hillierf, J.K. and Horanyii, M. and Igenbergsj, E. and Jessberger, E. K. and Johnson, T. V. and Kr{\"u}ger, H. and Matt, G. and McBride, N. and Mocker, A. and Lamy, P. and Linkert, D. and Linkert, G. and Lura, F. and McDonnell, J.A.M. and M{\"o}hlmann, D. and Morfill, G. E. and Postberg, F. and Roy, M. and Schwehm, G.H. and Spahn, Frank and Svestka, J. and Tschernjawski, V. and Tuzzolino, A. J. and W{\"a}sch, R. and Gr{\"u}n, E.}, title = {In situ dust measurements in the inner Saturnian system}, series = {Planetary and space science}, volume = {54}, journal = {Planetary and space science}, number = {9-10}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2006.05.021}, pages = {967 -- 987}, year = {2006}, abstract = {In July 2004 the Cassini-Huygens mission reached the Saturnian system and started its orbital tour. A total of 75 orbits will be carried out during the primary mission until August 2008. In these four years Cassini crosses the ring plane 150 times and spends approx. 400 h within Titan's orbit. The Cosmic Dust Analyser (CDA) onboard Cassini characterises the dust environment with its extended E ring and embedded moons. Here, we focus on the CDA results of the first year and we present the Dust Analyser (DA) data within Titan's orbit. This paper does investigate High Rate Detector data and dust composition measurements. The authors focus on the analysis of impact rates, which were strongly variable primarily due to changes of the spacecraft pointing. An overview is given about the ring plane crossings and the DA counter measurements. The DA dust impact rates are compared with the DA boresight configuration around all ring plane crossings between June 2004 and July 2005. Dust impacts were registered at altitudes as high as 100 000 km above the ring plane at distances from Saturn between 4 and 10 Saturn radii. In those regions the dust density of particles bigger than 0.5 can reach values of 0.001m-3.}, language = {en} }