@article{HennebergRochonPanzneretal.2004, author = {Henneberg, Oliver and Rochon, Paul and Panzner, Tobias and Finkelstein, Kenneth D. and Geue, Thomas and Saphiannikova, Marina and Pietsch, Ullrich}, title = {In-situ Investigation of Surface Relief Grating Formation in Photosensitive Polymers}, year = {2004}, language = {en} } @article{PietschSaphiannikovaHennebergetal.2004, author = {Pietsch, Ullrich and Saphiannikova, Marina and Henneberg, Oliver and Geue, Thomas}, title = {Non-linear effects during inscription of azobenzene surface relief gratings}, year = {2004}, language = {en} } @article{SaphiannikovaHennebergGeneetal.2004, author = {Saphiannikova, Marina and Henneberg, Oliver and Gene, T. M. and Pietsch, Ullrich and Rochon, Paul}, title = {Nonlinear effects during inscription of azobenzene surface relief gratings}, issn = {1520-6106}, year = {2004}, abstract = {Surface relief gratings were inscribed on azobenzene polymer films using a pulselike exposure of an Ar+ laser. The inscription process was initiated by a sequence of short pulses followed by much longer relaxation pauses. The development of the surface relief grating was probed by a He-Ne laser measuring the scattering intensity of the first- order grating peak. The growth time of the surface relief grating was found to be larger than the length of the pulses used. This unusual behavior can be considered as a nonlinear material response associated with the trans-cis isomerization of azobenzene moieties. In this study the polymer stress was assumed to be proportional to the number of cis-isomers. One-dimensional viscoelastic analysis was used to derive the polymer deformation. The rate of trans-cis isomerization increases with the intensity of the inscribing light; in the dark it is equal to the rate of thermal cis- trans isomerization. The respective relaxation times were estimated by fitting theoretical deformation curves to experimental data}, language = {en} } @article{HennebergGeuePietschetal.2004, author = {Henneberg, Oliver and Geue, Thomas and Pietsch, Ullrich and Winter, Bernd}, title = {Investigation of azobenzene side group orientation in polymer surface relief gratings by means of photoelectron spectroscopy}, year = {2004}, abstract = {The molecular orientation of azobenzene side groups in polymer films before (nonpatterned) and after (patterned) development of a surface relief grating has been investigated by photoelectron spectroscopy using synchrotron radiation. The photoemission spectra obtained for 60-100 eV photons of a patterned and a nonpatterned surface are similar when the polarization vector of the synchrotron light is parallel to the grating vector. However, for perpendicular excitation, considerable spectral intensity differences can be observed for 9-14 eV electron binding energy. The observed changes are attributed to the formation of well-oriented azobenzenes at the surface. (C) 2004 American Institute of Physics}, language = {en} } @article{GeueHennebergGrenzeretal.2002, author = {Geue, Thomas and Henneberg, Oliver and Grenzer, J{\"o}rg and Pietsch, Ullrich and Natansohn, Almeria and Rochon, Paul and Finkelstein, Kenneth D.}, title = {Formation of a buried density grating on thermal erasure of azobenzene polymer surface gratings}, issn = {0927-7757}, year = {2002}, language = {en} } @article{GeueHennebergPietsch2002, author = {Geue, Thomas and Henneberg, Oliver and Pietsch, Ullrich}, title = {X-ray reflectivity from sinusoidal surface relief gratings}, issn = {0023-4753}, year = {2002}, language = {en} } @article{HennebergPietschPanzneretal.2006, author = {Henneberg, Oliver and Pietsch, Ullrich and Panzner, Tobias and Geue, Thomas and Finkelstein, Kenneth D.}, title = {Simultaneous X-ray and visible light diffraction for the investigation of surface relief and density grating formation in azobenzene containing polymer films}, issn = {1542-1406}, doi = {10.1080/15421400500383345}, year = {2006}, abstract = {The development of surface relief and density patterns in azobenzene polymer films was studied by diffraction at two different wavelengths. We used x-ray diffraction of synchrotron radiation at 0.124 nm in combination with visible light diffraction at a wavelength of 633 nm. In contrast to visible light scattering x-ray diffraction allows the separation of a surface relief and a density grating contribution due to the different functional dependence of the scattering power. Additionally, the x-ray probe is most sensitive for the onset of the surface grating formation}, language = {en} } @article{HennebergGeueSaphiannikovaetal.2001, author = {Henneberg, Oliver and Geue, Thomas and Saphiannikova, Marina and Pietsch, Ullrich and Rochon, Paul and Natansohn, Almeria}, title = {Formation and dynamics of polymer surface relief gratings}, issn = {0378-5963}, year = {2001}, language = {en} } @article{HennebergChiGeueetal.2001, author = {Henneberg, Oliver and Chi, Li Feng and Geue, Thomas and Saphiannikova, Marina and Pietsch, Ullrich and Rochon, Paul and Natansohn, Almeria}, title = {Atomic force microscopy inspection of the early state of formation of polymer surface relief grating}, year = {2001}, language = {en} } @article{GeueSaphiannikovaHennebergetal.2002, author = {Geue, Thomas and Saphiannikova, Marina and Henneberg, Oliver and Pietsch, Ullrich and Rochon, Paul and Natansohn, Almeria}, title = {Formation mechanism and dynamics in polymer surface gratings}, year = {2002}, language = {en} }