@article{GanchevaOuniJeleniketal.2019, author = {Gancheva, Sofiya and Ouni, Meriem and Jelenik, Tomas and Koliaki, Chrysi and Szendroedi, Julia and Toledo, Frederico G. S. and Markgraf, Daniel Frank and Pesta, Dominik H. and Mastrototaro, Lucia and De Filippo, Elisabetta and Herder, Christian and J{\"a}hnert, Markus and Weiss, J{\"u}rgen and Strassburger, Klaus and Schlensak, Matthias and Sch{\"u}rmann, Annette and Roden, Michael}, title = {Dynamic changes of muscle insulin sensitivity after metabolic surgery}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-12081-0}, pages = {13}, year = {2019}, abstract = {The mechanisms underlying improved insulin sensitivity after surgically-induced weight loss are still unclear. We monitored skeletal muscle metabolism in obese individuals before and over 52 weeks after metabolic surgery. Initial weight loss occurs in parallel with a decrease in muscle oxidative capacity and respiratory control ratio. Persistent elevation of intramyocellular lipid intermediates, likely resulting from unrestrained adipose tissue lipolysis, accompanies the lack of rapid changes in insulin sensitivity. Simultaneously, alterations in skeletal muscle expression of genes involved in calcium/lipid metabolism and mitochondrial function associate with subsequent distinct DNA methylation patterns at 52 weeks after surgery. Thus, initial unfavorable metabolic changes including insulin resistance of adipose tissue and skeletal muscle precede epigenetic modifications of genes involved in muscle energy metabolism and the long-term improvement of insulin sensitivity.}, language = {en} } @article{NeuschaeferRubeLieskeKunaetal.2014, author = {Neuschaefer-Rube, Frank and Lieske, Stefanie and Kuna, Manuela and Henkel, Janin and Perry, Rachel J. and Erion, Derek M. and Pesta, Dominik and Willmes, Diana M. and Brachs, Sebastian and von Loeffelholz, Christian and Tolkachov, Alexander and Schupp, Michael and Pathe-Neuschaefer-Rube, Andrea and Pfeiffer, Andreas F. H. and Shulman, Gerald I. and P{\"u}schel, Gerhard Paul and Birkenfeld, Andreas L.}, title = {The mammalian INDY homolog is induced by CREB in a rat model of type 2 diabetes}, series = {Diabetes : a journal of the American Diabetes Association}, volume = {63}, journal = {Diabetes : a journal of the American Diabetes Association}, number = {3}, publisher = {American Diabetes Association}, address = {Alexandria}, issn = {0012-1797}, pages = {1048 -- 1057}, year = {2014}, language = {en} }