@article{vonLoeffelholzLieskeNeuschaeferRubeetal.2017, author = {von Loeffelholz, Christian and Lieske, Stefanie and Neuschaefer-Rube, Frank and Willmes, Diana M. and Raschzok, Nathanael and Sauer, Igor M. and K{\"o}nig, J{\"o}rg and Fromm, Martin F. and Horn, Paul and Chatzigeorgiou, Antonios and Pathe-Neuschaefer-Rube, Andrea and Jordan, Jens and Pfeiffer, Andreas F. H. and Mingrone, Geltrude and Bornstein, Stefan R. and Stroehle, Peter and Harms, Christoph and Wunderlich, F. Thomas and Helfand, Stephen L. and Bernier, Michel and de Cabo, Rafael and Shulman, Gerald I. and Chavakis, Triantafyllos and P{\"u}schel, Gerhard Paul and Birkenfeld, Andreas L.}, title = {The human longevity gene homolog INDY and interleukin-6 interact in hepatic lipid metabolism}, series = {Hepatology}, volume = {66}, journal = {Hepatology}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0270-9139}, doi = {10.1002/hep.29089}, pages = {616 -- 630}, year = {2017}, abstract = {Reduced expression of the Indy ("I am Not Dead, Yet") gene in lower organisms promotes longevity in a manner akin to caloric restriction. Deletion of the mammalian homolog of Indy (mIndy, Slc13a5) encoding for a plasma membrane-associated citrate transporter expressed highly in the liver, protects mice from high-fat diet-induced and aging-induced obesity and hepatic fat accumulation through a mechanism resembling caloric restriction. We studied a possible role of mIndy in human hepatic fat metabolism. In obese, insulin-resistant patients with nonalcoholic fatty liver disease, hepatic mIndy expression was increased and mIndy expression was also independently associated with hepatic steatosis. In nonhuman primates, a 2-year high-fat, high-sucrose diet increased hepatic mIndy expression. Liver microarray analysis showed that high mIndy expression was associated with pathways involved in hepatic lipid metabolism and immunological processes. Interleukin-6 (IL-6) was identified as a regulator of mIndy by binding to its cognate receptor. Studies in human primary hepatocytes confirmed that IL-6 markedly induced mIndy transcription through the IL-6 receptor and activation of the transcription factor signal transducer and activator of transcription 3, and a putative start site of the human mIndy promoter was determined. Activation of the IL-6-signal transducer and activator of transcription 3 pathway stimulated mIndy expression, enhanced cytoplasmic citrate influx, and augmented hepatic lipogenesis in vivo. In contrast, deletion of mIndy completely prevented the stimulating effect of IL-6 on citrate uptake and reduced hepatic lipogenesis. These data show that mIndy is increased in liver of obese humans and nonhuman primates with NALFD. Moreover, our data identify mIndy as a target gene of IL-6 and determine novel functions of IL-6 through mINDY. Conclusion: Targeting human mINDY may have therapeutic potential in obese patients with nonalcoholic fatty liver disease. German Clinical Trials Register: DRKS00005450.}, language = {en} } @article{HenkelColemanSchraplauetal.2017, author = {Henkel, Janin and Coleman, Charles Dominic and Schraplau, Anne and J{\"o}hrens, Korinna and Weber, Daniela and Castro, Jose Pedro and Hugo, Martin and Schulz, Tim Julius and Kr{\"a}mer, Stephanie and Sch{\"u}rmann, Annette and P{\"u}schel, Gerhard Paul}, title = {Induction of Steatohepatitis (NASH) with Insulin Resistance in Wild-type B6 Mice by a Western-type Diet Containing Soybean Oil and Cholesterol}, series = {Molecular medicine}, volume = {23}, journal = {Molecular medicine}, publisher = {Feinstein Inst. for Medical Research}, address = {Manhasset}, issn = {1076-1551}, doi = {10.2119/molmed.2016.00203}, pages = {70 -- 82}, year = {2017}, abstract = {Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are hepatic manifestations of the metabolic syndrome. Many currently used animal models of NAFLD/NASH lack clinical features of either NASH or metabolic syndrome such as hepatic inflammation and fibrosis (e.g., high-fat diets) or overweight and insulin resistance (e.g., methionine-choline-deficient diets), or they are based on monogenetic defects (e.g., ob/ob mice). In the current study, a Western-type diet containing soybean oil with high n-6-PUFA and 0.75\% cholesterol (SOD + Cho) induced steatosis, inflammation and fibrosis accompanied by hepatic lipid peroxidation and oxidative stress in livers of C57BL/6-mice, which in addition showed increased weight gain and insulin resistance, thus displaying a phenotype closely resembling all clinical features of NASH in patients with metabolic syndrome. In striking contrast, a soybean oil-containing Western-type diet without cholesterol (SOD) induced only mild steatosis but not hepatic inflammation, fibrosis, weight gain or insulin resistance. Another high-fat diet, mainly consisting of lard and supplemented with fructose in drinking water (LAD + Fru), resulted in more prominent weight gain, insulin resistance and hepatic steatosis than SOD + Cho, but livers were devoid of inflammation and fibrosis. Although both LAD + Fru-and SOD + Cho-fed animals had high plasma cholesterol, liver cholesterol was elevated only in SOD + Cho animals. Cholesterol induced expression of chemotactic and inflammatory cytokines in cultured Kupffer cells and rendered hepatocytes more susceptible to apoptosis. In summary, dietary cholesterol in the SOD + Cho diet may trigger hepatic inflammation and fibrosis. SOD + Cho-fed animals may be a useful disease model displaying many clinical features of patients with the metabolic syndrome and NASH.}, language = {en} }