@article{BeyreutherHammerWassermannetal.2012, author = {Beyreuther, Moritz and Hammer, Conny and Wassermann, Joachim and Ohrnberger, Matthias and Megies, Tobias}, title = {Constructing a hidden Markov Model based earthquake detector: application to induced seismicity}, series = {Geophysical journal international}, volume = {189}, journal = {Geophysical journal international}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2012.05361.x}, pages = {602 -- 610}, year = {2012}, abstract = {The triggering or detection of seismic events out of a continuous seismic data stream is one of the key issues of an automatic or semi-automatic seismic monitoring system. In the case of dense networks, either local or global, most of the implemented trigger algorithms are based on a large number of active stations. However, in the case of only few available stations or small events, for example, like in monitoring volcanoes or hydrothermal power plants, common triggers often show high false alarms. In such cases detection algorithms are of interest, which show reasonable performance when operating even on a single station. In this context, we apply Hidden Markov Models (HMM) which are algorithms borrowed from speech recognition. However, many pitfalls need to be avoided to apply speech recognition technology directly to earthquake detection. We show the fit of the model parameters in an innovative way. State clustering is introduced to refine the intrinsically assumed time dependency of the HMMs and we explain the effect coda has on the recognition results. The methodology is then used for the detection of anthropogenicly induced earthquakes for which we demonstrate for a period of 3.9 months of continuous data that the single station HMM earthquake detector can achieve similar detection rates as a common trigger in combination with coincidence sums over two stations. To show the general applicability of state clustering we apply the proposed method also to earthquake classification at Mt. Merapi volcano, Indonesia.}, language = {en} } @article{BlaserKruegerOhrnbergeretal.2010, author = {Blaser, Lilian and Kr{\"u}ger, Frank and Ohrnberger, Matthias and Scherbaum, Frank}, title = {Scaling relations of earthquake source parameter estimates with special focus on subduction environment}, issn = {0037-1106}, doi = {10.1785/0120100111}, year = {2010}, abstract = {Earthquake rupture length and width estimates are in demand in many seismological applications. Earthquake magnitude estimates are often available, whereas the geometrical extensions of the rupture fault mostly are lacking. Therefore, scaling relations are needed to derive length and width from magnitude. Most frequently used are the relationships of Wells and Coppersmith (1994) derived on the basis of a large dataset including all slip types with the exception of thrust faulting events in subduction environments. However, there are many applications dealing with earthquakes in subduction zones because of their high seismic and tsunamigenic potential. There are no well-established scaling relations for moment magnitude and length/width for subduction events. Within this study, we compiled a large database of source parameter estimates of 283 earthquakes. All focal mechanisms are represented, but special focus is set on (large) subduction zone events, in particular. Scaling relations were fitted with linear least-square as well as orthogonal regression and analyzed regarding the difference between continental and subduction zone/oceanic relationships. Additionally, the effect of technical progress in earthquake parameter estimation on scaling relations was tested as well as the influence of different fault mechanisms. For a given moment magnitude we found shorter but wider rupture areas of thrust events compared to Wells and Coppersmith (1994). The thrust event relationships for pure continental and pure subduction zone rupture areas were found to be almost identical. The scaling relations differ significantly for slip types. The exclusion of events prior to 1964 when the worldwide standard seismic network was established resulted in a remarkable effect on strike-slip scaling relations: the data do not show any saturation of rupture width of strike- slip earthquakes. Generally, rupture area seems to scale with mean slip independent of magnitude. The aspect ratio L/W, however, depends on moment and differs for each slip type.}, language = {en} } @article{BlaserOhrnbergerKruegeretal.2012, author = {Blaser, Lilian and Ohrnberger, Matthias and Kr{\"u}ger, Frank and Scherbaum, Frank}, title = {Probabilistic tsunami threat assessment of 10 recent earthquakes offshore Sumatra}, series = {Geophysical journal international}, volume = {188}, journal = {Geophysical journal international}, number = {3}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2011.05324.x}, pages = {1273 -- 1284}, year = {2012}, abstract = {Tsunami early warning (TEW) is a challenging task as a decision has to be made within few minutes on the basis of incomplete and error-prone data. Deterministic warning systems have difficulties in integrating and quantifying the intrinsic uncertainties. In contrast, probabilistic approaches provide a framework that handles uncertainties in a natural way. Recently, we have proposed a method using Bayesian networks (BNs) that takes into account the uncertainties of seismic source parameter estimates in TEW. In this follow-up study, the method is applied to 10 recent large earthquakes offshore Sumatra and tested for its performance. We have evaluated both the general model performance given the best knowledge we have today about the source parameters of the 10 events and the corresponding response on seismic source information evaluated in real-time. We find that the resulting site-specific warning level probabilities represent well the available tsunami wave measurements and observations. Difficulties occur in the real-time tsunami assessment if the moment magnitude estimate is severely over- or underestimated. In general, the probabilistic analysis reveals a considerably large range of uncertainties in the near-field TEW. By quantifying the uncertainties the BN analysis provides important additional information to a decision maker in a warning centre to deal with the complexity in TEW and to reason under uncertainty.}, language = {en} } @article{CristianoPetrosinoSaccorottietal.2010, author = {Cristiano, Luigia and Petrosino, Simona and Saccorotti, Gilberto and Ohrnberger, Matthias and Scarpa, Roberto}, title = {Shear-wave velocity structure at Mt. Etna from inversion of Rayleigh-wave dispersion patterns (2 s < T < 20 s)}, issn = {1593-5213}, doi = {10.4401/Ag-4574}, year = {2010}, abstract = {In the present study, we investigated the dispersion characteristics of medium-to-long period Rayleigh waves (2 s < T < 20 s) using both single-station techniques (multiple-filter analysis, and phase-match filter) and multichannel techniques (horizontal slowness [p] and angular frequency [omega] stack, and cross-correlation) to determine the velocity structure for the Mt. Etna volcano. We applied these techniques to a dataset of teleseisms, as regional and local earthquakes recorded by two broad-band seismic arrays installed at Mt. Etna in 2002 and 2005, during two seismic surveys organized by the Istituto Nazionale di Geofisica e Vulcanologia (INGV), sezione di Napoli. The dispersion curves obtained showed phase velocities ranging from 1.5 km/s to 4.0 km/s in the frequency band 0.05 Hz to 0.45 Hz. We inverted the average phase velocity dispersion curves using a non-linear approach, to obtain a set of shear-wave velocity models with maximum resolution depths of 25 km to 30 km. Moreover, the presence of lateral velocity contrasts was checked by dividing the whole array into seven triangular sub-arrays and inverting the dispersion curves relative to each triangle.}, language = {en} } @misc{DahmBeckerBischoffetal.2013, author = {Dahm, Torsten and Becker, Dirk and Bischoff, Monika and Cesca, Simone and Dost, B. and Fritschen, R. and Hainzl, Sebastian and Klose, C. D. and Kuhn, D. and Lasocki, S. and Meier, Thomas and Ohrnberger, Matthias and Rivalta, Eleonora and Wegler, Ulrich and Husen, Stephan}, title = {Recommendation for the discrimination of human-related and natural seismicity}, series = {Journal of seismology}, volume = {17}, journal = {Journal of seismology}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {1383-4649}, doi = {10.1007/s10950-012-9295-6}, pages = {197 -- 202}, year = {2013}, abstract = {Various techniques are utilized by the seismological community, extractive industries, energy and geoengineering companies to identify earthquake nucleation processes in close proximity to engineering operation points. These operations may comprise fluid extraction or injections, artificial water reservoir impoundments, open pit and deep mining, deep geothermal power generations or carbon sequestration. In this letter to the editor, we outline several lines of investigation that we suggest to follow to address the discrimination problem between natural seismicity and seismic events induced or triggered by geoengineering activities. These suggestions have been developed by a group of experts during several meetings and workshops, and we feel that their publication as a summary report is helpful for the geoscientific community. Specific investigation procedures and discrimination approaches, on which our recommendations are based, are also published in this Special Issue (SI) of Journal of Seismology.}, language = {en} } @article{DahmKuehnOhrnbergeretal.2010, author = {Dahm, Torsten and Kuehn, Daniela and Ohrnberger, Matthias and Kroeger, Jens and Wiederhold, Helga and Reuther, Claus-Dieter and Dehghani, Ali and Scherbaum, Frank}, title = {Combining geophysical data sets to study the dynamics of shallow evaporites in urban environments : application to Hamburg, Germany}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2010.04521.x}, year = {2010}, abstract = {Shallowly situated evaporites in built-up areas are of relevance for urban and cultural development and hydrological regulation. The hazard of sinkholes, subrosion depressions and gypsum karst is often difficult to evaluate and may quickly change with anthropogenic influence. The geophysical exploration of evaporites in metropolitan areas is often not feasible with active industrial techniques. We collect and combine different passive geophysical data as microgravity, ambient vibrations, deformation and hydrological information to study the roof morphology of shallow evaporites beneath Hamburg, Northern Germany. The application of a novel gravity inversion technique leads to a 3-D depth model of the salt diapir under study. We compare the gravity-based depth model to pseudo-depths from H/V measurements and depth estimates from small-scale seismological array data. While the general range and trend of the diapir roof is consistent, a few anomalous regions are identified where H/V pseudo-depths indicate shallower structures not observed in gravity or array data. These are interpreted by shallow residual caprock floaters and zones of increased porosity. The shallow salt structure clearly correlates with a relative subsidence in the order of 2 mm yr(-1). The combined interpretation of roof morphology, yearly subsidence rates, chemical analyses of groundwater and of hydraulic head in aquifers indicates that the salt diapir beneath Hamburg is subject to significant ongoing dissolution that may possibly affect subrosion depressions, sinkhole distribution and land usage. The combined analysis of passive geophysical data may be exemplary for the study of shallow evaporites beneath other urban areas.}, language = {en} } @article{DiGiulioSavvaidisOhrnbergeretal.2012, author = {Di Giulio, Giuseppe and Savvaidis, Alexandros and Ohrnberger, Matthias and Wathelet, Marc and Cornou, Cecile and Knapmeyer-Endrun, Brigitte and Renalier, Florence and Theodoulidis, Nikos and Bard, Pierre-Yves}, title = {Exploring the model space and ranking a best class of models in surface-wave dispersion inversion application at European strong-motion sites}, series = {Geophysics}, volume = {77}, journal = {Geophysics}, number = {3}, publisher = {Society of Exploration Geophysicists}, address = {Tulsa}, issn = {0016-8033}, doi = {10.1190/GEO2011-0116.1}, pages = {B147 -- B166}, year = {2012}, abstract = {The inversion of surface-wave dispersion curve to derive shear-wave velocity profile is a very delicate process dealing with a nonunique problem, which is strongly dependent on the model space parameterization. When independent and reliable information is not available, the selection of most representative models within the ensemble produced. by the inversion is often difficult. We implemented a strategy in the inversion of dispersion curves able to investigate the influence of the parameterization of the model space and to select a "best" class of models. We analyzed surface-wave dispersion curves measured at 14 European strong..-motion sites within the NERIES EC-Project. We focused on the inversion task exploring the model space by means of four distinct pararneterization classes composed of layers progressively added over a half-space. The classes differ in the definition of the shear-wave velocity profile; we considered models with uniform velocity as well as models with increasing velocity with depth. At each site and for each model parameterization, we performed an extensive surface-wave inversion (200,100 models for five seeds) using the conditional neighborhood algorithm. We addressed the model evaluation following the corrected Akaike's information criterion (AlCc) that combines the concept of misfit to the number of degrees of freedom of the system. The misfit was computed as least-squares estimation between theoretical and observed dispersion curve. The model complexity was accounted in a penalty term by AlCc. By applying such inversion strategy on 14 strong-motion sites, we found that the best parameterization of the model space is mostly three to four layers over a half-space: where the shear-wave velocity of the uppermost layers can follow uniform or power-law dependence with depth. The shear-wave velocity profiles derived by inversion agree with shear-wave velocity profiles provided by borehole surveys at approximately 80\% of the sites.}, language = {en} } @article{EndrunOhrnbergerSavvaidis2010, author = {Endrun, Brigitte and Ohrnberger, Matthias and Savvaidis, Alexandros}, title = {On the repeatability and consistency of three-component ambient vibration array measurements}, issn = {1570-761X}, doi = {10.1007/s10518-009-9159-9}, year = {2010}, abstract = {Ambient vibration measurements with small, temporary arrays that produce estimates of surface wave dispersion have become increasingly popular as a low-cost, non-invasive tool for site characterisation. An important requirement for these measurements to be meaningful, however, is the temporal consistency and repeatability of the resulting dispersion and spatial autocorrelation curve estimates. Data acquired within several European research projects (NERIES task JRA4, SESAME, and other multinational experiments) offer the chance to investigate the variability of the derived data products. The dataset analysed here consists of repeated array measurements, with several years of time elapsed between them. The measurements were conducted by different groups in different seasons, using different instrumentations and array layouts, at six sites in Greece and Italy. Ambient vibration amplitude spectra and locations of dominant sources vary between the two measurements at each location. Still, analysis indicates that this does not influence the derived dispersion information, which is stable in time and neither influenced by the instrumentation nor the analyst. The frequency range over which the dispersion curves and spatial autocorrelation curves can be reliably estimated depends on the array dimensions (minimum and maximum aperture) used in the specific deployment, though, and may accordingly vary between the repeated experiments. The relative contribution of Rayleigh and Love waves to the wavefield can likewise change between repeated measurements. The observed relative contribution of Rayleigh waves is generally at or below 50\%, with especially low values for the rural sites. Besides, the visibility of higher modes depends on the noise wavefield conditions. The similarity of the dispersion and autocorrelation curves measured at each site indicates that the curves are stable, mainly determined by the sub-surface structure, and can thus be used to derive velocity information with depth. Differences between velocity models for the same site derived from independently determined dispersion and autocorrelation curves-as observed in other studies-are consequently not adequately explained by uncertainties in the measurement part.}, language = {en} } @article{EsfahaniGholamiOhrnberger2020, author = {Esfahani, Reza Dokht Dolatabadi and Gholami, Ali and Ohrnberger, Matthias}, title = {An inexact augmented Lagrangian method for nonlinear dispersion-curve inversion using Dix-type global linear approximation}, series = {Geophysics}, volume = {85}, journal = {Geophysics}, number = {5}, publisher = {Society of Exploration Geophysicists}, address = {Tulsa}, issn = {0016-8033}, doi = {10.1190/GEO2019-0717.1}, pages = {EN77 -- EN85}, year = {2020}, abstract = {Dispersion-curve inversion of Rayleigh waves to infer subsurface shear-wave velocity is a long-standing problem in seismology. Due to nonlinearity and ill-posedness, sophisticated regularization techniques are required to solve the problem for a stable velocity model. We have formulated the problem as a minimization problem with nonlinear operator constraint and then solve it by using an inexact augmented Lagrangian method, taking advantage of the Haney-Tsai Dix-type relation (a global linear approximation of the nonlinear forward operator). This replaces the original regularized nonlinear problem with iterative minimization of a more tractable regularized linear problem followed by a nonlinear update of the phase velocity (data) in which the update can be performed accurately with any forward modeling engine, for example, the finite-element method. The algorithm allows discretizing the medium with thin layers (for the finite-element method) and thus omitting the layer thicknesses from the unknowns and also allows incorporating arbitrary regularizations to shape the desired velocity model. In this research, we use total variation regularization to retrieve the shear-wave velocity model. We use two synthetic and two real data examples to illustrate the performance of the inversion algorithm with total variation regularization. We find that the method is fast and stable, and it converges to the solution of the original nonlinear problem.}, language = {en} } @article{EsfahaniVogelCottonetal.2021, author = {Esfahani, Reza Dokht Dolatabadi and Vogel, Kristin and Cotton, Fabrice Pierre and Ohrnberger, Matthias and Scherbaum, Frank and Kriegerowski, Marius}, title = {Exploring the dimensionality of ground-motion data by applying autoencoder techniques}, series = {Bulletin of the Seismological Society of America : BSSA}, volume = {111}, journal = {Bulletin of the Seismological Society of America : BSSA}, number = {3}, publisher = {Seismological Society of America}, address = {El Cerito, Calif.}, issn = {0037-1106}, doi = {10.1785/0120200285}, pages = {1563 -- 1576}, year = {2021}, abstract = {In this article, we address the question of how observed ground-motion data can most effectively be modeled for engineering seismological purposes. Toward this goal, we use a data-driven method, based on a deep-learning autoencoder with a variable number of nodes in the bottleneck layer, to determine how many parameters are needed to reconstruct synthetic and observed ground-motion data in terms of their median values and scatter. The reconstruction error as a function of the number of nodes in the bottleneck is used as an indicator of the underlying dimensionality of ground-motion data, that is, the minimum number of predictor variables needed in a ground-motion model. Two synthetic and one observed datasets are studied to prove the performance of the proposed method. We find that mapping ground-motion data to a 2D manifold primarily captures magnitude and distance information and is suited for an approximate data reconstruction. The data reconstruction improves with an increasing number of bottleneck nodes of up to three and four, but it saturates if more nodes are added to the bottleneck.}, language = {en} }