@article{MizunoPohlNiemiecetal.2011, author = {Mizuno, Yosuke and Pohl, Martin and Niemiec, Jacek and Zhang, Bing and Nishikawa, Ken-Ichi and Hardee, Philip E.}, title = {Magnetic-field amplification by turbulence in a relativistic shockpropagating through an inhomogeneous medium}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {726}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/726/2/62}, pages = {11}, year = {2011}, abstract = {We perform two-dimensional relativistic magnetohydrodynamic simulations of a mildly relativistic shock propagating through an inhomogeneous medium. We show that the postshock region becomes turbulent owing to preshock density inhomogeneity, and the magnetic field is strongly amplified due to the stretching and folding of field lines in the turbulent velocity field. The amplified magnetic field evolves into a filamentary structure in two-dimensional simulations. The magnetic energy spectrum is flatter than the Kolmogorov spectrum and indicates that a so-called small-scale dynamo is occurring in the postshock region. We also find that the amount of magnetic-field amplification depends on the direction of the mean preshock magnetic field, and the timescale of magnetic-field growth depends on the shock strength.}, language = {en} }