@article{WittBuchmannBlomeyeretal.2011, author = {Witt, Stephanie H. and Buchmann, Arlette F. and Blomeyer, Dorothea and Nieratschker, Vanessa and Treutlein, Jens and Esser, G{\"u}nter and Schmidt, Martin H. and Bidlingmaier, Martin and Wiedemann, Klaus and Rietschel, Marcella and Laucht, Manfred and Wuest, Stefan and Zimmermann, Ulrich S.}, title = {An interaction between a neuropeptide Y gene polymorphism and early adversity modulates endocrine stress responses}, series = {Psychoneuroendocrinology}, volume = {36}, journal = {Psychoneuroendocrinology}, number = {7}, publisher = {Elsevier}, address = {Oxford}, issn = {0306-4530}, doi = {10.1016/j.psyneuen.2010.12.015}, pages = {1010 -- 1020}, year = {2011}, abstract = {Interindividual variability in the regulation of the human stress system accounts for a part of the individual's liability to stress-related diseases. These differences are influenced by environmental and genetic factors. Early childhood adversity is a well-studied environmental factor affecting an individual's stress response which has been shown to be modulated by gene environment interaction (GxE). Neuropeptide Y (NPY) plays a role in stress regulation and genetic variation in NPY may influence stress responses. In this study, we analyzed the association of a common variant in the NPY gene promoter, rs16147, with cortisol and ACTH responses to acute psychosocial stress in young adults from the Mannheim Study of Children at Risk (MARS), an ongoing epidemiological cohort study following the outcome of early adversity from birth into adulthood. We found evidence of a GxE interaction between rs16147 and early adversity significantly affecting HPA axis responses to acute psychosocial stress. These findings suggest that the neurobiological mechanisms linking early adverse experience and later neuroendocrine stress regulation are modulated by a gene variant whose functional relevance is documented by increasing convergent evidence from in vitro, animal and human studies.}, language = {en} } @article{HeinrichBuchmannZohseletal.2015, author = {Heinrich, Angela and Buchmann, Arlette F. and Zohsel, Katrin and Dukal, Helene and Frank, Josef and Treutlein, Jens and Nieratschker, Vanessa and Witt, Stephanie H. and Brandeis, Daniel and Schmidt, Martin H. and Esser, G{\"u}nter and Banaschewski, Tobias and Laucht, Manfred and Rietschel, Marcella}, title = {Alterations of Glucocorticoid Receptor Gene Methylation in Externalizing Disorders During Childhood and Adolescence}, series = {Behavior genetics : an international journal devoted to research in the inheritance of behavior in animals and man}, volume = {45}, journal = {Behavior genetics : an international journal devoted to research in the inheritance of behavior in animals and man}, number = {5}, publisher = {Springer}, address = {New York}, issn = {0001-8244}, doi = {10.1007/s10519-015-9721-y}, pages = {529 -- 536}, year = {2015}, abstract = {Epigenetic modulations are a hypothesized link between environmental factors and the development of psychiatric disorders. Research has suggested that patients with depression or bipolar disorder exhibit higher methylation levels in the glucocorticoid receptor gene NR3C1. We aimed to investigate whether NR3C1 methylation changes are similarly associated with externalizing disorders such as aggressive behavior and conduct disorder. NR3C1 exon 1F methylation was analyzed in young adults with a lifetime diagnosis of an externalizing disorder (N = 68) or a depressive disorder (N = 27) and healthy controls (N = 124) from the Mannheim Study of Children at Risk. The externalizing disorders group had significantly lower NR3C1 methylation levels than the lifetime depressive disorder group (p = 0.009) and healthy controls (p = 0.001) This report of lower methylation levels in NR3C1 in externalizing disorders may indicate a mechanism through which the differential development of externalizing disorders as opposed to depressive disorders might occur.}, language = {en} }