@article{NiHerzschuh2011, author = {Ni, Jian and Herzschuh, Ulrike}, title = {Simulating biome distribution on the Tibetan Plateau using a modified global vegetation model}, series = {Arctic, antarctic, and alpine research : an interdisciplinary journal}, volume = {43}, journal = {Arctic, antarctic, and alpine research : an interdisciplinary journal}, number = {3}, publisher = {Institute of Arctic and Alpine Research, University of Colorado}, address = {Boulder}, issn = {1523-0430}, doi = {10.1657/1938-4246-43.3.429}, pages = {429 -- 441}, year = {2011}, abstract = {We used a regionally modified global vegetation model (BIOME4-Tibet) to simulate biome distribution on the Tibetan Plateau under current climate conditions derived from regional meteorological observations. The bioclimatic limits (mean temperatures of the coldest and warmest months, minimum temperature, growing degree-days on 5 degrees C and 0 degrees C bases) for some key alpine plant functional types (temperate deciduous and conifer trees, boreal deciduous and conifer trees, desert woody plants, tundra shrubs, cold herbaceous plants, and lichens/forbs) were redefined based on regional vegetation-climate relationships. Modern vegetation maps confirmed that the BIOME4-Tibet model does a better job of simulating biome patterns on the plateau (gridcell agreement 52\%) than the original BIOME4 model (35\%). This improved model enhanced our ability to simulate temperate conifer forest, cool conifer and mixed forest, evergreen taiga, temperate xerophytic shrubland, temperate grassland and desert, and steppe and shrub tundra biomes, but made a negligible or reduced difference to the prediction of temperate deciduous forest, warm-temperate mixed forest, and three tundra biomes (erect dwarf-shrub tundra, prostrate dwarf-shrub tundra, and cushion forb, lichen, and moss tundra). Future modification of the vegetation model, by increasing the number of shrub and herb plant functional types, re-parameterization of more precise bioclimatic constraints, and improved representation of soil, permafrost, and snow processes, will be needed to better characterize the distribution of alpine vegetation on the Tibetan Plateau.}, language = {en} } @article{CaoNiHerzschuhetal.2013, author = {Cao, Xianyong and Ni, Jian and Herzschuh, Ulrike and Wang, Yongbo and Zhao, Yan}, title = {A late quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions set up and evaluation}, series = {Review of palaeobotany and palynology : an international journal}, volume = {194}, journal = {Review of palaeobotany and palynology : an international journal}, number = {13}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0034-6667}, doi = {10.1016/j.revpalbo.2013.02.003}, pages = {21 -- 37}, year = {2013}, abstract = {A total of 271 pollen records were selected from a large collection of both raw and digitized pollen spectra from eastern continental Asia (70 degrees-135 degrees E and 18 degrees-55 degrees N). Following pollen percentage recalculations, taxonomic homogenization, and age-depth model revision, the pollen spectra were interpolated at a 500-year resolution and a taxonomically harmonized and temporally standardized fossil pollen dataset established with 226 pollen taxa, covering the last 22 cal lea. Of the 271 pollen records, 85\% were published since 1990, with reliable chronologies and high temporal resolutions; of these, 50\% have raw data with complete pollen assemblages, ensuring the quality of this dataset The pollen records available for each 500-year time slice are well distributed over all main vegetation types and climatic zones of the study area, making their pollen spectra suitable for paleovegetation and paleoclimate research. Such a dataset can be used as an example for the development of similar datasets for other regions of the world.}, language = {en} } @article{CaoTianHerzschuhetal.2022, author = {Cao, Xianyong and Tian, Fang and Herzschuh, Ulrike and Ni, Jian and Xu, Qinghai and Li, Wenjia and Zhang, Yanrong and Luo, Mingyu and Chen, Fahu}, title = {Human activities have reduced plant diversity in eastern China over the last two millennia}, series = {Global change biology}, volume = {28}, journal = {Global change biology}, number = {16}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.16274}, pages = {4962 -- 4976}, year = {2022}, abstract = {Understanding the history and regional singularities of human impact on vegetation is key to developing strategies for sustainable ecosystem management. In this study, fossil and modern pollen datasets from China are employed to investigate temporal changes in pollen composition, analogue quality, and pollen diversity during the Holocene. Anthropogenic disturbance and vegetation's responses are also assessed. Results reveal that pollen assemblages from non-forest communities fail to provide evidence of human impact for the western part of China (annual precipitation less than 400 mm and/or elevation more than 3000 m.a.s.l.), as inferred from the stable quality of modern analogues, principal components, and diversity of species and communities throughout the Holocene. For the eastern part of China, the proportion of fossil pollen spectra with good modern analogues increases from ca. 50\% to ca. 80\% during the last 2 millennia, indicating an enhanced intensity of anthropogenic disturbance on vegetation. This disturbance has caused the pollen spectra to become taxonomically less diverse over space (reduced abundances of arboreal taxa and increased abundances of herbaceous taxa), highlighting a reduced south-north differentiation and divergence from past vegetation between regions in the eastern part of China. We recommend that care is taken in eastern China when basing the development of ecosystem management strategies on vegetation changes in the region during the last 2000 years, since humans have significantly disturbed the vegetation during this period.}, language = {en} }