@article{SchroeterNeugartSchreineretal.2019, author = {Schr{\"o}ter, David and Neugart, Susanne and Schreiner, Monika and Grune, Tilman and Rohn, Sascha and Ott, Christiane}, title = {Amaranth's 2-Caffeoylisocitric Acid—An Anti-Inflammatory Caffeic Acid Derivative That Impairs NF-κB Signaling in LPS-Challenged RAW 264.7 Macrophages}, series = {Nutrients}, volume = {11}, journal = {Nutrients}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu11030571}, pages = {14}, year = {2019}, abstract = {For centuries, Amaranthus sp. were used as food, ornamentals, and medication. Molecular mechanisms, explaining the health beneficial properties of amaranth, are not yet understood, but have been attributed to secondary metabolites, such as phenolic compounds. One of the most abundant phenolic compounds in amaranth leaves is 2-caffeoylisocitric acid (C-IA) and regarding food occurrence, C-IA is exclusively found in various amaranth species. In the present study, the anti-inflammatory activity of C-IA, chlorogenic acid, and caffeic acid in LPS-challenged macrophages (RAW 264.7) has been investigated and cellular contents of the caffeic acid derivatives (CADs) were quantified in the cells and media. The CADs were quantified in the cell lysates in nanomolar concentrations, indicating a cellular uptake. Treatment of LPS-challenged RAW 264.7 cells with 10 µM of CADs counteracted the LPS effects and led to significantly lower mRNA and protein levels of inducible nitric oxide synthase, tumor necrosis factor alpha, and interleukin 6, by directly decreasing the translocation of the nuclear factor κB/Rel-like containing protein 65 into the nucleus. This work provides new insights into the molecular mechanisms that attribute to amaranth's anti-inflammatory properties and highlights C-IA's potential as a health-beneficial compound for future research.}, language = {en} } @article{OdongoSchlotzBaldermannetal.2018, author = {Odongo, Grace Akinyi and Schlotz, Nina and Baldermann, Susanne and Neugart, Susanne and Ngwene, Benard and Schreiner, Monika and Lamy, Evelyn}, title = {Effects of Amaranthus cruentus L. on aflatoxin B1- and oxidative stress-induced DNA damage in human liver (HepG2) cells}, series = {Food bioscience}, volume = {26}, journal = {Food bioscience}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-4292}, doi = {10.1016/j.fbio.2018.09.006}, pages = {42 -- 48}, year = {2018}, abstract = {Amaranth is presently an underutilized crop despite its high content of micronutrients/bioactive phytochemicals and its capacity to thrive in harsh environmental condition. The present study aimed at determining the health benefits of Amaranthus cruentus L. in terms of protection against DNA damage induced by the mycotoxin aflatoxin B1 (AFB1) and oxidative stress using comet assay. The antioxidant potential was further investigated using electron paramagnetic resonance spectroscopy (EPR) and an ARE/Nrf2 reporter gene assay in vitro in a human liver model using the HepG2 cell line. Ethanolic extracts from fresh leaves grown under controlled conditions were used and additionally analyzed for their phytochemical content using liquid chromatography-mass spectrometry (LC-MS). The extracts inhibited both AFB1- and oxidative stress-induced DNA damage in a concentration dependent way with a maximum effect of 57\% and 81\%, respectively. Oxidative stress triggered using ferrous sulfate was blocked by up to 38\% (EPR); the potential to induce antioxidant enzymes using ARE/Nrf2-mediated gene expression was also confirmed. Based on these in vitro findings, further studies on the health-protecting effects of A. cruentus are encouraged to fully explore its health promoting potential and provide the scientific basis for encouraging its cultivation and consumption.}, language = {en} } @misc{BaldermannHomannNeugartetal.2018, author = {Baldermann, Susanne and Homann, Thomas and Neugart, Susanne and Chmielewski, Frank M. and G{\"o}tz, Klaus-Peter and G{\"o}deke, Kristin and Huschek, Gerd and Morlock, Gertrud E. and Rawel, Harshadrai Manilal}, title = {Selected Plant Metabolites Involved in Oxidation-Reduction Processes during Bud Dormancy and Ontogenetic Development in Sweet Cherry Buds (Prunus avium L.)}, series = {Molecules}, journal = {Molecules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417442}, pages = {19}, year = {2018}, abstract = {Many biochemical processes are involved in regulating the consecutive transition of different phases of dormancy in sweet cherry buds. An evaluation based on a metabolic approach has, as yet, only been partly addressed. The aim of this work, therefore, was to determine which plant metabolites could serve as biomarkers for the different transitions in sweet cherry buds. The focus here was on those metabolites involved in oxidation-reduction processes during bud dormancy, as determined by targeted and untargeted mass spectrometry-based methods. The metabolites addressed included phenolic compounds, ascorbate/dehydroascorbate, reducing sugars, carotenoids and chlorophylls. The results demonstrate that the content of phenolic compounds decrease until the end of endodormancy. After a long period of constancy until the end of ecodormancy, a final phase of further decrease followed up to the phenophase open cluster. The main phenolic compounds were caffeoylquinic acids, coumaroylquinic acids and catechins, as well as quercetin and kaempferol derivatives. The data also support the protective role of ascorbate and glutathione in the para- and endodormancy phases. Consistent trends in the content of reducing sugars can be elucidated for the different phenophases of dormancy, too. The untargeted approach with principle component analysis (PCA) clearly differentiates the different timings of dormancy giving further valuable information.}, language = {en} } @article{BaldermannHomannNeugartetal.2018, author = {Baldermann, Susanne and Homann, Thomas and Neugart, Susanne and Chmielewski, Frank M. and G{\"o}tz, Klaus-Peter and G{\"o}deke, Kristin and Huschek, Gerd and Morlock, Gertrud E. and Rawel, Harshadrai Manilal}, title = {Selected Plant Metabolites Involved in Oxidation-Reduction Processes during Bud Dormancy and Ontogenetic Development in Sweet Cherry Buds (Prunus avium L.)}, series = {Molecules}, volume = {23}, journal = {Molecules}, number = {5}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules23051197}, pages = {1 -- 19}, year = {2018}, abstract = {Many biochemical processes are involved in regulating the consecutive transition of different phases of dormancy in sweet cherry buds. An evaluation based on a metabolic approach has, as yet, only been partly addressed. The aim of this work, therefore, was to determine which plant metabolites could serve as biomarkers for the different transitions in sweet cherry buds. The focus here was on those metabolites involved in oxidation-reduction processes during bud dormancy, as determined by targeted and untargeted mass spectrometry-based methods. The metabolites addressed included phenolic compounds, ascorbate/dehydroascorbate, reducing sugars, carotenoids and chlorophylls. The results demonstrate that the content of phenolic compounds decrease until the end of endodormancy. After a long period of constancy until the end of ecodormancy, a final phase of further decrease followed up to the phenophase open cluster. The main phenolic compounds were caffeoylquinic acids, coumaroylquinic acids and catechins, as well as quercetin and kaempferol derivatives. The data also support the protective role of ascorbate and glutathione in the para- and endodormancy phases. Consistent trends in the content of reducing sugars can be elucidated for the different phenophases of dormancy, too. The untargeted approach with principle component analysis (PCA) clearly differentiates the different timings of dormancy giving further valuable information.}, language = {en} } @misc{WitzelNeugartRuppeletal.2015, author = {Witzel, Katja and Neugart, Susanne and Ruppel, Silke and Schreiner, Monika and Wiesner, Melanie and Baldermann, Susanne}, title = {Recent progress in the use of 'omics technologies in brassicaceous vegetables}, series = {Frontiers in plant science}, journal = {Frontiers in plant science}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406479}, pages = {14}, year = {2015}, abstract = {Continuing advances in 'omics methodologies and instrumentation is enhancing the understanding of how plants cope with the dynamic nature of their growing environment. 'Omics platforms have been only recently extended to cover horticultural crop species. Many of the most widely cultivated vegetable crops belong to the genus Brassica: these include plants grown for their root (turnip, rutabaga/swede), their swollen stem base (kohlrabi), their leaves (cabbage, kale, pak choi) and their inflorescence (cauliflower, broccoli). Characterization at the genome, transcript, protein and metabolite levels has illustrated the complexity of the cellular response to a whole series of environmental stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold acclimation, and excessive and sub optimal irradiation. This review covers recent applications of omics technologies to the brassicaceous vegetables, and discusses future scenarios in achieving improvements in crop end-use quality.}, language = {en} } @article{NeugartWiesnerReinholdFredeetal.2018, author = {Neugart, Susanne and Wiesner-Reinhold, Melanie and Frede, Katja and Jander, Elisabeth and Homann, Thomas and Rawel, Harshadrai Manilal and Schreiner, Monika and Baldermann, Susanne}, title = {Effect of Solid Biological Waste Compost on the Metabolite Profile of Brassica rapa ssp chinensis}, series = {Frontiers in plant science : FPLS}, volume = {9}, journal = {Frontiers in plant science : FPLS}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2018.00305}, pages = {13}, year = {2018}, abstract = {Large quantities of biological waste are generated at various steps within the food production chain and a great utilization potential for this solid biological waste exists apart from the current main usage for the feedstuff sector. It remains unclear how the usage of biological waste as compost modulates plant metabolites. We investigated the effect of biological waste of the processing of coffee, aronia, and hop added to soil on the plant metabolite profile by means of liquid chromatography in pak choi sprouts. Here we demonstrate that the solid biological waste composts induced specific changes in the metabolite profiles and the changes are depending on the type of the organic residues and its concentration in soil. The targeted analysis of selected plant metabolites, associated with health beneficial properties of the Brassicaceae family, revealed increased concentrations of carotenoids (up to 3.2-fold) and decreased amounts of glucosinolates (up to 4.7-fold) as well as phenolic compounds (up to 1.5-fold).}, language = {en} } @misc{WitzelNeugartRuppeletal.2015, author = {Witzel, Katja and Neugart, Susanne and Ruppel, Silke and Schreiner, Monika and Wiesner, Melanie and Baldermann, Susanne}, title = {Recent progress in the use of 'omics technologies in brassicaceous vegetables}, series = {Frontiers in plant science}, volume = {6}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2015.00244}, pages = {14}, year = {2015}, abstract = {Continuing advances in 'omics methodologies and instrumentation is enhancing the understanding of how plants cope with the dynamic nature of their growing environment. 'Omics platforms have been only recently extended to cover horticultural crop species. Many of the most widely cultivated vegetable crops belong to the genus Brassica: these include plants grown for their root (turnip, rutabaga/swede), their swollen stem base (kohlrabi), their leaves (cabbage, kale, pak choi) and their inflorescence (cauliflower, broccoli). Characterization at the genome, transcript, protein and metabolite levels has illustrated the complexity of the cellular response to a whole series of environmental stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold acclimation, and excessive and sub optimal irradiation. This review covers recent applications of omics technologies to the brassicaceous vegetables, and discusses future scenarios in achieving improvements in crop end-use quality.}, language = {en} } @misc{OdongoSchlotzBaldermannetal.2018, author = {Odongo, Grace Akinyi and Schlotz, Nina and Baldermann, Susanne and Neugart, Susanne and Huyskens-Keil, Susanne and Ngwene, Benard and Trierweiler, Bernhard and Schreiner, Monika and Lamy, Evelyn}, title = {African nightshade (Solanum scabrum Mill.)}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1133}, issn = {1866-8372}, doi = {10.25932/publishup-45911}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459114}, pages = {22}, year = {2018}, abstract = {Plant cultivation and processing may impact nutrient and phytochemical content of vegetables. The present study aimed at determining the influence of cultivation and processing on the health promoting capacity of African nightshade (Solanum scabrum Mill.) leaves, an indigenous vegetable, rich in nutrients and phytochemicals. Anti-genotoxicity against the human liver carcinogen aflatoxin B1 (AFB1) as determined by the comet assay and radical oxygen species (ROS) scavenging capacity of ethanolic and aqueous extracts were investigated in human derived liver (HepG2) cells. ROS scavenging activity was assessed using electron paramagnetic spin resonance and quantification of ARE/Nrf2 mediated gene expression. The cultivation was done under different environmental conditions. The processing included fermentation and cooking; postharvest ultraviolet irradiation (UV-C) treatment was also investigated. Overall, S. scabrum extracts showed strong health promoting potential, the highest potential was observed with the fermented extract, which showed a 60\% reduction of AFB1 induced DNA damage and a 38\% reduction in FeSO4 induced oxidative stress. The content of total polyphenols, carotenoids and chlorophylls was indeed affected by cultivation and processing. Based on the present in vitro findings consumption of S. scabrum leaves could be further encouraged, preferentially after cooking or fermentation of the plant.}, language = {en} } @misc{BaldermannBlagojevicFredeetal.2016, author = {Baldermann, Susanne and Blagojevic, Lara and Frede, Katja and Klopsch, R. and Neugart, Susanne and Neumann, A. and Ngwene, Benard and Norkeweit, Jessica and Schroeter, D. and Schroeter, A. and Schweigert, Florian J. and Wiesner, M. and Schreiner, Monika}, title = {Are Neglected Plants the Food for the Future?}, series = {Critical reviews in plant sciences}, volume = {35}, journal = {Critical reviews in plant sciences}, publisher = {Institut d'Estudis Catalans}, address = {Philadelphia}, issn = {0735-2689}, doi = {10.1080/07352689.2016.1201399}, pages = {106 -- 119}, year = {2016}, abstract = {Malnutrition, poor health, hunger, and even starvation are still the world's greatest challenges. Malnutrition is defined as deficiency of nutrition due to not ingesting the proper amounts of nutrients by simply not eating enough food and/or by consuming nutrient-poor food in respect to the daily nutritional requirements. Moreover, malnutrition and disease are closely associated and incidences of such diet-related diseases increase particularly in low- and middle-income states. While foods of animal origin are often unaffordable to low-income families, various neglected crops can offer an alternative source of micronutrients, vitamins, as well as health-promoting secondary plant metabolites. Therefore, agricultural and horticultural research should develop strategies not only to produce more food, but also to improve access to more nutritious food. In this context, one promising approach is to promote biodiversity in the dietary pattern of low-income people by getting access to nutritional as well as affordable food and providing recommendations for food selection and preparation. Worldwide, a multitude of various plant species are assigned to be consumed as grains, vegetables, and fruits, but only a limited number of these species are used as commercial cash crops. Consequently, numerous neglected and underutilized species offer the potential to diversify not only the human diet, but also increase food production levels, and, thus, enable more sustainable and resilient agro- and horti-food systems. To exploit the potential of neglected plant (NP) species, coordinated approaches on the local, regional, and international level have to be integrated that consequently demand the involvement of numerous multi-stakeholders. Thus, the objective of the present review is to evaluate whether NP species are important as "Future Food" for improving the nutritional status of humans as well as increasing resilience of agro- and horti-food systems.}, language = {en} } @article{NeugartBaldermannNgweneetal.2017, author = {Neugart, Susanne and Baldermann, Susanne and Ngwene, Benard and Wesonga, John and Schreiner, Monika}, title = {Indigenous leafy vegetables of Eastern Africa - A source of extraordinary secondary plant metabolites}, series = {Food research international}, volume = {100}, journal = {Food research international}, publisher = {Elsevier}, address = {Amsterdam}, organization = {The e-ASTROGAM Collaboration}, issn = {0963-9969}, doi = {10.1016/j.foodres.2017.02.014}, pages = {411 -- 422}, year = {2017}, abstract = {Indigenous African leafy vegetables vary enormously in their secondary plant metabolites whereat genus and the species have a great impact. In African nightshade (Solanum scabrum), spiderplant (Cleome gynandra), amaranth (Amaranthus cruentus), cowpea (Vigna unguiculata), Ethiopian kale (Brassica carinata) and common kale (Brassica oleracea) the specific secondary metabolite profile was elucidated and gained detailed data about carotenoids, chlorophylls, glucosinolates and phenolic compounds all having an appropriate contribution to health beneficial properties of indigenous African leafy vegetables. Exemplarily, various quercetin glycosides such as quercetin-3-rutinoside occur in high concentrations in African nightshade, spiderplant, and amaranth between similar to 1400-3300 mu g/g DW. Additionally the extraordinary hydroxydnnamic acid derivatives such as glucaric isomers and isocitric acid isomers are found especially in amaranth (up to similar to 1250 mu g/g DW) and spiderplant (up to 120 mu g/g DW). Carotenoids concentrations are high in amaranth (up to 101.7 mu g/g DW) and spiderplants (up to 64.7 mu g/g DW) showing high concentrations of beta-carotene, the pro-vitamin A. In contrast to the ubiquitous occurring phenolics and carotenoids, glucosinolates are only present in the Brassicales species Ethiopian kale, common kale and spiderplant characterized by diverse glucosinolate profiles. Generally, the consumption of a variety of these indigenous African leafy vegetables can be recommended to contribute to different benefits such as antioxidant activity, increase pro-vitamin A and anticancerogenic compounds in a healthy diet. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{WitzelStrehmelBaldermannetal.2017, author = {Witzel, Katja and Strehmel, Nadine and Baldermann, Susanne and Neugart, Susanne and Becker, Yvonne and Becker, Matthias and Berger, Beatrice and Scheel, Dierk and Grosch, Rita and Schreiner, Monika and Ruppel, Silke}, title = {Arabidopsis thaliana root and root exudate metabolism is altered by the growth-promoting bacterium Kosakonia radicincitans DSM 16656(T)}, series = {Plant and soil}, volume = {419}, journal = {Plant and soil}, publisher = {Springer}, address = {Dordrecht}, issn = {0032-079X}, doi = {10.1007/s11104-017-3371-1}, pages = {557 -- 573}, year = {2017}, abstract = {Plant growth-promoting bacteria (PGPB) affect host physiological processes in various ways. This study aims at elucidating the dependence of bacterial-induced growth promotion on the plant genotype and characterizing plant metabolic adaptations to PGPB. Eighteen Arabidopsis thaliana accessions were inoculated with the PGPB strain Kosakonia radicincitans DSM 16656(T). Colonisation pattern was assessed by enhanced green fluorescent protein (eGFP)-tagged K. radicincitans in three A. thaliana accessions differing in their growth response. Metabolic impact of bacterial colonisation was determined for the best responding accession by profiling distinct classes of plant secondary metabolites and root exudates. Inoculation of 18 A. thaliana accessions resulted in a wide range of growth responses, from repression to enhancement. Testing the bacterial colonisation of three accessions did not reveal a differential pattern. Profiling of plant secondary metabolites showed a differential accumulation of glucosinolates, phenylpropanoids and carotenoids in roots. Analysis of root exudates demonstrated that primary and secondary metabolites were predominantly differentially depleted by bacterial inoculation. The plant genotype controls the bacterial growth promoting traits. Levels of lutein and beta-carotene were elevated in inoculated roots. Supplementing a bacterial suspension with beta-carotene increased bacterial growth, while this was not the case when lutein was applied, indicating that beta-carotene could be a positive regulator of plant growth promotion.}, language = {en} } @misc{KlopschBaldermannVossetal.2018, author = {Klopsch, Rebecca and Baldermann, Susanne and Voss, Alexander and Rohn, Sascha and Schreiner, Monika and Neugart, Susanne}, title = {Bread enriched with legume microgreens and leaves}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1064}, issn = {1866-8372}, doi = {10.25932/publishup-46870}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468707}, pages = {21}, year = {2018}, abstract = {Flavonoids, carotenoids, and chlorophylls were characterized in microgreens and leaves of pea (Pisum sativum) and lupin (Lupinus angustifolius) as these metabolites change during ontogeny. All metabolites were higher in the leaves for both species. Acylated quercetin and kaempferol sophorotrioses were predominant in pea. Genistein and malonylated chrysoeriol were predominant in lupin. Further, the impact of breadmaking on these metabolites using pea and lupin material of two ontogenetic stages as an added ingredient in wheat-based bread was assessed. In "pea microgreen bread" no decrease of quercetin was found with regard to the non-processed plant material. However kaempferol glycosides showed slight decreases induced by the breadmaking process in "pea microgreen bread" and "pea leaf bread." In "lupin microgreen bread" no decrease of genistein compared to the non-processed plant material was found. Chrysoeriol glycosides showed slight decreases induced by the breadmaking process in "lupin microgreen bread" and "lupin leaf bread." In all breads, carotenoids and chlorophylls were depleted however pheophytin formation was caused. Thus, pea and lupin microgreens and leaves are suitable, natural ingredients for enhancing health-promoting secondary plant metabolites in bread and may even be used to tailor bread for specific consumer health needs.}, language = {en} } @article{NgweneNeugartBaldermannetal.2017, author = {Ngwene, Benard and Neugart, Susanne and Baldermann, Susanne and Ravi, Beena and Schreiner, Monika}, title = {Intercropping Induces Changes in Specific Secondary Metabolite Concentration in Ethiopian Kale (Brassica carinata) and African Nightshade (Solanum scabrum) under Controlled Conditions}, series = {Frontiers in plant science}, volume = {8}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2017.01700}, pages = {12}, year = {2017}, abstract = {Intercropping is widespread in small-holder farming systems in tropical regions and is also practiced in the cultivation of indigenous vegetables, to alleviate the multiple burdens of malnutrition. Due to interspecific competition and/or complementation between intercrops, intercropping may lead to changes in plants accumulation of minerals and secondary metabolites and hence, alter nutritional quality for consumers. Intercropping aims to intensify land productivity, while ensuring that nutritional quality is not compromised. This study aimed to investigate changes in minerals and secondary plant metabolites in intercropped Brassica carinata and Solanum scabrum, two important African indigenous vegetables, and evaluated the suitability of this combination for dryer areas. B. carinata and S. scabrum were grown for 6 weeks under controlled conditions in a greenhouse trial. Large rootboxes (8000 cm(3) volume) were specifically designed for this experiment. Each rootbox was planted with two plants, either of the same plant species (mono) or one of each plant species (mixed). A quartz sand/soil substrate was used and fertilized adequately for optimal plant growth. During the last 4 weeks of the experiment, the plants were either supplied with optimal (65\% WHC) or low (30\% WHC) irrigation, to test the effect of a late-season drought. Intercropping increased total glucosinolate content in B. carinata, while maintaining biomass production and the contents of other health related minerals in both B. carinata and S. scabrum. Moreover, low irrigation led to an increase in carotene accumulation in both mono and intercropped S. scabrum, but not in B. carinata, while the majority of kaempferol glycosides and hydroxycinnamic acid derivatives of both species were decreased by intercropping and drought treatment. This study indicates that some health-related phytochemicals can be modified by intercropping or late-season drought, but field validation of these results is necessary before definite recommendation can be made to stakeholders.}, language = {en} } @article{KlopschBaldermannVossetal.2019, author = {Klopsch, Rebecca and Baldermann, Susanne and Voss, Alexander and Rohn, Sascha and Schreiner, Monika and Neugart, Susanne}, title = {Narrow-Banded UVB Affects the Stability of Secondary Plant Metabolites in Kale (Brassica oleracea var. sabellica) and Pea (Pisum sativum) Leaves Being Added to Lentil Flour Fortified Bread: A Novel Approach for Producing Functional Foods}, series = {Foods}, volume = {8}, journal = {Foods}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2304-8158}, doi = {10.3390/foods8100427}, pages = {20}, year = {2019}, abstract = {Young kale and pea leaves are rich in secondary plant metabolites (SPMs) whose profile can be affected by ultraviolet B (UVB) radiation. Carotenoids and flavonoids in kale and pea exposed to narrow-banded UVB, produced by innovative light-emitting diodes (LEDs), and subsequently used for breadmaking were investigated for the first time, thus combining two important strategies to increase the SPMs intake. Breads were also fortified with protein-rich lentil flour. Antioxidant activity in the 'vegetable breads' indicated health-promoting effects. Lentil flour increased the antioxidant activity in all of the 'vegetable breads'. While carotenoids and chlorophylls showed a minor response to UVB treatment, kaempferol glycosides decreased in favor of increasing quercetin glycosides, especially in kale. Additionally, breadmaking caused major decreases in carotenoids and a conversion of chlorophyll to bioactive degradation products. In 'kale breads' and 'pea breads', 20\% and 84\% of flavonoid glycosides were recovered. Thus, kale and pea leaves seem to be suitable natural ingredients for producing innovative Functional Foods.}, language = {en} } @article{KlopschBaldermannHanschenetal.2019, author = {Klopsch, Rebecca and Baldermann, Susanne and Hanschen, Franziska S. and Voss, Alexander and Rohn, Sascha and Schreiner, Monika and Neugart, Susanne}, title = {Brassica-enriched wheat bread: Unraveling the impact of ontogeny and breadmaking on bioactive secondary plant metabolites of pak choi and kale}, series = {Food chemistry}, volume = {295}, journal = {Food chemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0308-8146}, doi = {10.1016/j.foodchem.2019.05.113}, pages = {412 -- 422}, year = {2019}, abstract = {Consumption of Brassica vegetables is linked to health benefits, as they contain high concentrations of the following secondary plant metabolites (SPMs): glucosinolate breakdown products, carotenoids, chlorophylls, and phenolic compounds. Especially Brassica vegetables are consumed as microgreens (developed cotyledons). It was investigated how different ontogenetic stages (microgreens or leaves) of pak choi (Brassica rapa subsp. chinensis) and kale (Brassica oleracea var. sabellica) differ in their SPM concentration. The impact of breadmaking on SPMs in microgreens (7 days) and leaves (14 days) in pak choi and kale as a supplement in mixed wheat bread was assessed. In leaves, carotenoids, chlorophylls, and phenolic compounds were higher compared to those of microgreens. Breadmaking caused a decrease of SPMs. Chlorophyll degradation was observed, leading to pheophytin and pyropheophytin formation. In kale, sinapoylgentiobiose, a hydroxycinnamic acid derivative, concentration increased. Thus, leaves of Brassica species are suitable as natural ingredients for enhancing bioactive SPM concentrations in bread.}, language = {en} } @article{ChenHanschenNeugartetal.2019, author = {Chen, Xiaomin and Hanschen, Franziska S. and Neugart, Susanne and Schreiner, Monika and Vargas, Sara A. and Gutschmann, Bj{\"o}rn and Baldermann, Susanne}, title = {Boiling and steaming induced changes in secondary metabolites in three different cultivars of pak choi (Brassica rapa subsp. chinensis)}, series = {Journal of Food Composition and Analysis}, volume = {82}, journal = {Journal of Food Composition and Analysis}, publisher = {Elsevier}, address = {San Diego}, issn = {0889-1575}, doi = {10.1016/j.jfca.2019.06.004}, pages = {9}, year = {2019}, abstract = {Pak choi (Brassica rapa subsp. chinensis) is a leafy vegetable that is widely available in Asia and consumed in rising quantities in Europe. Pak choi contains high levels of secondary plant metabolites, such as carotenoids, chlorophylls, glucosinolates, phenolic compounds, and vitamin K, which are beneficial for humans if consumed on a regular basis. The evaluation of the genotype-induced variation of secondary plant metabolites revealed that the cultivar 'Amur' contained the highest concentration of secondary plant metabolites. Furthermore, steaming retained more chlorophylls, glucosinolates, phenolic acids and flavonoid compounds than boiling. In contrast, both domestic cooking methods - boiling, and steaming - reduced the formation of glucosinolate breakdown products, especially the undesired epithionitriles and nitriles but less of the health-beneficial isothiocyanates.}, language = {en} } @article{OdongoSchlotzBaldermannetal.2018, author = {Odongo, Grace Akinyi and Schlotz, Nina and Baldermann, Susanne and Neugart, Susanne and Huyskens-Keil, Susanne and Ngwene, Benard and Trierweiler, Bernhard and Schreiner, Monika and Lamy, Evelyn}, title = {African Nightshade (Solanum scabrum Mill.)}, series = {Nutrients}, volume = {10}, journal = {Nutrients}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu10101532}, pages = {20}, year = {2018}, abstract = {Plant cultivation and processing may impact nutrient and phytochemical content of vegetables. The present study aimed at determining the influence of cultivation and processing on the health promoting capacity of African nightshade (Solanum scabrum Mill.) leaves, an indigenous vegetable, rich in nutrients and phytochemicals. Anti-genotoxicity against the human liver carcinogen aflatoxin B1 (AFB(1)) as determined by the comet assay and radical oxygen species (ROS) scavenging capacity of ethanolic and aqueous extracts were investigated in human derived liver (HepG2) cells. ROS scavenging activity was assessed using electron paramagnetic spin resonance and quantification of ARE/Nrf2 mediated gene expression. The cultivation was done under different environmental conditions. The processing included fermentation and cooking; postharvest ultraviolet irradiation (UV-C) treatment was also investigated. Overall, S. scabrum extracts showed strong health promoting potential, the highest potential was observed with the fermented extract, which showed a 60\% reduction of AFB(1) induced DNA damage and a 38\% reduction in FeSO4 induced oxidative stress. The content of total polyphenols, carotenoids and chlorophylls was indeed affected by cultivation and processing. Based on the present in vitro findings consumption of S. scabrum leaves could be further encouraged, preferentially after cooking or fermentation of the plant.}, language = {en} } @article{HeinzeHanschenWiesnerReinholdetal.2018, author = {Heinze, Mandy and Hanschen, Franziska S. and Wiesner-Reinhold, Melanie and Baldermann, Susanne and Gr{\"a}fe, Jan and Schreiner, Monika and Neugart, Susanne}, title = {Effects of Developmental Stages and Reduced UVB and Low UV Conditions on Plant Secondary Metabolite Profiles in Pak Choi (Brassica rapa subsp chinensis)}, series = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, volume = {66}, journal = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-8561}, doi = {10.1021/acs.jafc.7b03996}, pages = {1678 -- 1692}, year = {2018}, abstract = {Pak choi (Brassica rapa subsp. chinensis) is rich in secondary metabolites and contains numerous antioxidants, including flavonoids; hydroxycinnamic acids; carotenoids; chlorophylls; and glucosinolates, which can be hydrolyzed to epithionitriles, nitriles, or isothiocyanates. Here, we investigate the effect of reduced exposure to ultraviolet B (UVB) and UV (UVA and UVB) light at four different developmental stages of pak choi. We found that both the plant morphology and secondary metabolite profiles were affected by reduced exposure to UVB and UV, depending on the plant's developmental stage. In detail, mature 15- and 30-leaf plants had higher concentrations of flavonoids, hydroxycinnamic acids, carotenoids, and chlorophylls, whereas sprouts contained high concentrations of glucosinolates and their hydrolysis products. Dry weights and leaf areas increased as a result of reduced UVB and low UV. For the flavonoids and hydroxycinnamic acids in 30-leaf plants, less complex compounds were favored, for example, sinapic acid acylated kaempferol triglycoside instead of the corresponding tetraglycoside. Moreover, also in 30-leaf plants, zeaxanthin, a carotenoid linked to protection during photosynthesis, was increased under low UV conditions. Interestingly, most glucosinolates were not affected by reduced UVB and low UV conditions. However, this study underlines the importance of 4-(methylsulfinyl)butyl glucosinolate in response to UVA and UVB exposure. Further, reduced UVB and low UV conditions resulted in higher concentrations of glucosinolate-derived nitriles. In conclusion, exposure to low doses of UVB and UV from the early to late developmental stages did not result in overall lower concentrations of plant secondary metabolites.}, language = {en} } @article{KlopschBaldermannVossetal.2018, author = {Klopsch, Rebecca and Baldermann, Susanne and Voss, Alexander and Rohn, Sascha and Schreiner, Monika and Neugart, Susanne}, title = {Bread enriched with legume microgreens and leaves}, series = {Frontiers in chemistry}, volume = {6}, journal = {Frontiers in chemistry}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-2646}, doi = {10.3389/fchem.2018.00322}, pages = {19}, year = {2018}, abstract = {Flavonoids, carotenoids, and chlorophylls were characterized in microgreens and leaves of pea (Pisum sativum) and lupin (Lupinus angustifolius) as these metabolites change during ontogeny. All metabolites were higher in the leaves for both species. Acylated quercetin and kaempferol sophorotrioses were predominant in pea. Genistein and malonylated chrysoeriol were predominant in lupin. Further, the impact of breadmaking on these metabolites using pea and lupin material of two ontogenetic stages as an added ingredient in wheat-based bread was assessed. In "pea microgreen bread" no decrease of quercetin was found with regard to the non-processed plant material. However kaempferol glycosides showed slight decreases induced by the breadmaking process in "pea microgreen bread" and "pea leaf bread." In "lupin microgreen bread" no decrease of genistein compared to the non-processed plant material was found. Chrysoeriol glycosides showed slight decreases induced by the breadmaking process in "lupin microgreen bread" and "lupin leaf bread." In all breads, carotenoids and chlorophylls were depleted however pheophytin formation was caused. Thus, pea and lupin microgreens and leaves are suitable, natural ingredients for enhancing health-promoting secondary plant metabolites in bread and may even be used to tailor bread for specific consumer health needs.}, language = {en} }