@article{ZenNeherSilmyetal.2005, author = {Zen, Achmad and Neher, Dieter and Silmy, Kamel and Hollander, A. and Asawapirom, Udom and Scherf, Ullrich}, title = {Improving the performance of organic field effect transistor by optimizing the gate insulator surface}, year = {2005}, abstract = {The effect of oxygen plasma treatment and/or silanization with hexamethyldisilazane (HMDS) on the surface chemistry and the morphology of the SiO2-gate insulator were studied with respect to the performance of organic field effect transistors. Using X-ray photoelectron spectroscopy (XPS), it is shown that silanization leads to the growth of a polysiloxane interfacial layer and that longer silanization times increase the thickness of this layer. Most important, silanization reduces the signal from surface contaminations such as oxidized hydrocarbon molecules. In fact, the lowest concentration of these contaminations was found after a combined oxygen plasma/silanization treatment. The results of these investigations were correlated with the characteristic device parameters of polymer field effect transistors with poly(3-hexylthiophene)s as the semiconducting layer. We found that the field effect mobility correlates with the concentration of contaminations as measured by XPS. We, finally, demonstrate that silanization significantly improves the operational stability of the device in air compared to the untreated devices}, language = {en} } @article{KietzkeHorholdNeher2005, author = {Kietzke, Thomas and Horhold, H. H. and Neher, Dieter}, title = {Efficient polymer solar cells based on M3EH-PPV}, year = {2005}, abstract = {We report on polymer blend solar cells with an external quantum efficiency of more than 30\% and a hi-h overall energy conversion efficiency (ECE) under white light illumination (100 mW/cm(2)) Of Lip to 1.7\% using a blend of M3EH- PPV (poly [2,5-dimethoxy-1,4-phenylene-1,2-ethenylene-2-methoxy-5(2-ethylhexyloxy)-(1,4-pheiiylene-1,2-ethenylene)]) and CN-ether-PPV (poly[oxa-1,4-phenylene-1,2(1-cyano)ethenylene-2,5-dioctyloxy-1,4-phenylene-1,2-(2-cyano)ethellyiene-1,4- phenylene]). We attribute these high efficiencies to the formation of a vertically composition graded structure during spin coating Photoluminescence measurements performed on the blend layers indicated the formation of exciplexes between both types of polymers, which we propose to be one factor preventing even higher efficiencies}, language = {en} } @article{EgbeCarbonnierPauletal.2005, author = {Egbe, D. A. M. and Carbonnier, B. and Paul, E. L. and Muhlbacher, D. and Kietzke, Thomas and Birckner, Eckhard and Neher, Dieter and Grummt, U. W. and Pakula, T.}, title = {Diyne-containing PPVs : Solid-state properties and comparison of their photophysical and electrochemical properties with those of their Yne-containing counterparts}, issn = {0024-9297}, year = {2005}, abstract = {Diyne-containing poly(p-phenylene-vinylene)s, 4a-d, of general chemical structure-(Ph-C\&3bond; C-C\&3bond; C-Ph- CH\&3bond; CH-Ph-CH\&3bond; CH-)(n), obtained through polycondensation reactions of 1,4-bis(4-formyl-2,5-dioctyloxyphenyl)- buta-1,3-diyne (2) with various 2,5-dialkoxy-p-xylylenebis(diethylphosphonates), 3a-d, are the subject of this report. The polymers exhibit great disparity in their degree of polymerization, n, which might be ascribed to side-chain-related differences in reactivity of the reactive species during the polycondensation process and which led to n-dependent absorption (solution and solid state) and emission (solution) behaviors of the polymers. Polarizing optical microscopy and differential scanning calorimetry are employed to probe their thermal behavior. The structure is investigated by means of wide-angle X-ray diffraction for both isotropic and macroscopically oriented samples. Comparison of photophysical (experimental and theoretical) and electrochemical properties of the polymers with those of their yne- containing counterparts 6a-d [-(Ph-C\&3bond; C-Ph-CH\&3bond; CH-Ph-CH\&3bond; CH-)(n)] has been carried out. Similar photophysical behavior was observed for both types of polymers despite the difference in backbone conjugation pattern. The introduction of a second yne unit in 4 lowers the HOMO and LUMO levels, thereby enhancing the electron affinity of polymers 4 compared to polymers 6. The "wider opening" introduced by the second yne unit facilitates moreover the movement of charges during the electrochemical processes leading to minimal discrepancy, Delta E-g between the optical and electrochemical band gap energies. Polymers 6, in contrast, show significant side-chain-dependent Delta E-g values. Low turn-on voltages between 2 and 3 V and maximal luminous efficiencies between 0.32 and 1.25 cd/A were obtained from LED devices of configuration ITO/PEDOT:PSS/polymer 4/Ca/Al}, language = {en} } @article{EgbeUlbrichtOrgisetal.2005, author = {Egbe, D. A. M. and Ulbricht, C. and Orgis, Thomas and Carbonnier, B. and Kietzke, Thomas and Peip, M. and Metzner, M. and Gericke, M. and Birckner, Eckhard and Pakula, T. and Neher, Dieter and Grumm, U. W.}, title = {Odd-even effects and the influence of length and specific positioning of alkoxy side chains on the optical properties of PPE-PPV polymers}, issn = {0897-4756}, year = {2005}, abstract = {This contribution reports the combined influences of odd-even effects and the specific positioning of alkoxy side chains OR1 = (OCn+H-10(2(n+10)+1)) and OR2 = (OCnH2n+1) (with n = 6, 7, 8, 9) on the phenylene-ethynylene and phenylene- vinylene segments, respectively, on the optical properties of hybrid polymers P(n+10)/n of general repeating unit: -Ph-C equivalent to C-Ph-C equivalent to C-Ph-CH=CH-Ph-CH=CH-. For the polymeric materials, visual color impression varies alternatively between orange red (P16/6 and P18/8) and yellow (P17/7 and P19/9) according to the odd and even features of the alkoxy side chains, where odd or even relates to the total number of sp(3)-hybridized atoms within the side chains. This side chain related effect is ascribed to both absorptive and emissive behaviors of the polymers on the basis of photophysical investigations in the bulk. Almost identical thin film absorption spectra were obtained for all four materials; however, the photoluminescence of the odd polymers, P16/6 (lambda(f) = 556 nm) and P18/ 8 (lambda(f) = 614 nm), was red-shifted relative to that of their even counterparts (lambda(f) = 535 nm). Further, the P18/8 maximum at 614 nm can be readily assigned to excimer emission, as evidenced by the largest Stokes shift (5600 cm(- 1)), largest fwhmf-value (3700 cm(-1))(,) and the lowest Phi(f)-value of 24\%. The strong pi-pi interchain interaction in P18/8, due to loose alkoxy side chains packing, does not only favor fluorescence quenching but also enable an effective inter- as well as intra-molecular recombination of the generated positive and negative polarons in electrolurninescence, which explains the good EL properties of this polymer irrespective of the solvent used. A voltage-dependent blue shift of the EL spectra of up to 100 nm was observed for P18/8 devices prepared from aromatic solvents. This red to green EL shift as observed with increasing voltage is assigned to conformational changes of the polymer chains with increasing temperature}, language = {en} } @article{KietzkeStillerLandfesteretal.2005, author = {Kietzke, Thomas and Stiller, Burkhard and Landfester, Katharina and Montenegro, Rivelino V. D. and Neher, Dieter}, title = {Probing the local optical properties of layers prepared from polymer nanoparticles}, issn = {0379-6779}, year = {2005}, abstract = {It is well known that the performance of solar cells based on a blend of hole-accepting and electron-accepting conjugated polymers as the active material depend crucially on the length scale of the resulting phase separated morphology. However, a direct control of this morphology is difficult if the layer is prepared from an organic solvent. To circumvent this difficulty, recently a universal method to fabricate defined nano-structured blend layer using nanoparticles dispersed in water was demonstrated. These nanoparticles were prepared with the miniemulsion method, which allows for the preparation of semiconducting polymer nanospheres (SPNs) with diameters in the range of 30 to 300 nanometres. Since the process starts from the active material dissolved in a common solvent, it can be applied to the fabrication of nanoparticles of blends of polymers with oligomers or even with inorganic materials. We present here for the first time scanning near field optical microscopy (SNOM) investigations on these novel nanostructured polymer layers. We show that by spin-coating a mixture of two different dispersions a nanoparticle monolayer with a statistically distribution of the nanoparticles can be obtained. Mixing conjugated polymer nanoparticles with some inert particles like polystyrene beads may allow for the preparation of nano-sized light emitters}, language = {en} } @article{KarageorgievNeherSchulzetal.2005, author = {Karageorgiev, Peter and Neher, Dieter and Schulz, Burkhard and Stiller, Burkhard and Pietsch, Ullrich and Giersig, Michael and Brehmer, Ludwig}, title = {From anisotropic photo-fluidity towards nanomanipulation in the optical near-field}, issn = {1476-1122}, year = {2005}, abstract = {An increase in random molecular vibrations of a solid owing to heating above the melting point leads to a decrease in its long-range order and a loss of structural symmetry. Therefore conventional liquids are isotropic media. Here we report on a light-induced isothermal transition of a polymer film from an isotropic solid to an anisotropic liquid state in which the degree of mechanical anisotropy can be controlled by light. Whereas during irradiation by circular polarized light the film behaves as an isotropic viscoelastic fluid, it shows considerable fluidity only in the direction parallel to the light field vector under linear polarized light. The fluidization phenomenon is related to photoinduced motion of azobenzene-functionalized molecular units, which can be effectively activated only when their transition dipole moments are oriented close to the direction of the light polarization. We also describe here how the photofluidization allows nanoscopic elements of matter to be precisely manipulated}, language = {en} } @article{MechauSaphiannikovaNeher2005, author = {Mechau, Norman and Saphiannikova, Marina and Neher, Dieter}, title = {Dielectric and mechanical properties of azobenzene polymer layers under visible and ultraviolet irradiation}, issn = {0024-9297}, year = {2005}, abstract = {Photoinduced changes in the mechanical and dielectric properties of azobenzene polymer films were measured utilizing the method of electromechanical spectroscopy. The measurements revealed a strong correlation between the time- dependent behavior of the plate compliance and the dielectric constant under irradiation. Actinic light causes a light softening of the film that also manifests itself in the increase of the dielectric constant, whereas ultraviolet irradiation results in an initial plasticization of the film followed by its hardening. The latter is accompanied by decrease of the dielectric constant. A semiquantitative model based on the kinetics of the photoisomerization process in azobenzene polymers is proposed. We assume that both visible and ultraviolet irradiation increase the free volume in the layer due to photoisomerization. Additionally, ultraviolet light increases the modulus of the polymer matrix due to the presence of a high density of azobenzene moieties in the cis state. These assumptions allowed us to reproduce the time- dependent behavior of the bulk compliance as well as the dielectric constant at different irradiation intensities, for both visible and ultraviolet light, with only two adjustable parameters}, language = {en} } @article{ZenSaphiannikovaNeheretal.2005, author = {Zen, Achmad and Saphiannikova, Marina and Neher, Dieter and Asawapirom, Udom and Scherf, Ullrich}, title = {Comparative study of the field-effect mobility of a copolymer and a binary blend based on poly(3- alkylthiophene)s}, issn = {0897-4756}, year = {2005}, abstract = {The performance of highly soluble regioregular poly[ (3-hexylthiophene)-co-(3-octylthiophetie)] (P3HTOT) as a semiconducting material in organic field-effect transistors (OFETs) is presented in comparison to that of the corresponding homopolymers. Transistors made from as-prepared layers of P3HTOT exhibit a mobility of ca. 7 x 10(-3) cm(2) V-1 s(-1), which is comparable to the performance of transistors made from as-prepared poly(3-hexylthiophene) (P3HT) and almost 6 times larger than the mobility of transistors prepared with poly(3-octylthiophene) (P3OT). On the other hand, the solubility parameter delta(p) of P3HTOT is close to that of the highly soluble P3OT. Moreover, compared to a physical blend of poly(3-hexylthiophene) and poly(3-octylthiophene), the mobility of P3HTOT devices is almost twice as large and the performance does not degrade upon annealing at elevated temperatures. Therefore, the copolymer approach outlined here may be one promising step toward an optimum balance between a Sufficient processability of the polymers from common organic solvents, a high solid state order, and applicable OFET performances}, language = {en} } @article{SaphiannikovaNeher2005, author = {Saphiannikova, Marina and Neher, Dieter}, title = {Thermodynamic theory of light-induced material transport in amorphous azobenzene polymer films}, issn = {1520-6106}, year = {2005}, abstract = {It was discovered 10 years ago that the exposure of an initially flat layer of an azobenzene-containing polymer to an inhomogeneous light pattern leads to the formation of surface relief structures, accompanied by a mass transport over several micrometers. However, the driving force of this process is still unclear. We propose a new thermodynamic approach that explains a number of experimental findings including the light-induced deformation of free-standing films and the formation of surface relief gratings for main inscription geometries. Our basic assumption is that under homogeneous illumination, an initially isotropic sample should stretch itself along the polarization direction to compensate the entropy decrease produced by the photoinduced reorientation of azobenzene chromophores. The magnitude of the elastic stress, estimated by taking the derivative of the free energy over the sample deformation, is shown to be sufficient to induce plastic deformation of the polymer film. Orientational distributions of chromophores predicted by our model are compared with those deduced from Raman intensity measurements}, language = {en} } @article{BagnichBasslerNeher2005, author = {Bagnich, Sergey A. and Bassler, H. and Neher, Dieter}, title = {Exciton dynamics in ladder-type methyl-poly(para-phenylene) doped with phosphorescent dyes}, issn = {0022-2313}, year = {2005}, abstract = {The luminescence of a ladder-type methyl-poly(para-phenylene) (MeLPPP) doped with platinum-porphyrin dye PtOEP covering the concentration 10(-3)-5\% by weight has been measured employing cw and transient techniques. Upon excitation into the range of absorption of the host, strong phosphorescence of the dopant is observed. Possible ways of populating the dopant triplet state are considered. (c) 2004 Elsevier B.V. All rights reserved}, language = {en} }