@article{PaulkeStranksKniepertetal.2016, author = {Paulke, Andreas and Stranks, Samuel D. and Kniepert, Juliane and Kurpiers, Jona and Wolff, Christian Michael and Sch{\"o}n, Natalie and Snaith, Henry J. and Brenner, Thomas J. K. and Neher, Dieter}, title = {Charge carrier recombination dynamics in perovskite and polymer solar cells}, series = {Applied physics letters}, volume = {108}, journal = {Applied physics letters}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4944044}, pages = {252 -- 262}, year = {2016}, abstract = {Time-delayed collection field experiments are applied to planar organometal halide perovskite (CH3NH3PbI3) based solar cells to investigate charge carrier recombination in a fully working solar cell at the nanosecond to microsecond time scale. Recombination of mobile (extractable) charges is shown to follow second-order recombination dynamics for all fluences and time scales tested. Most importantly, the bimolecular recombination coefficient is found to be time-dependent, with an initial value of ca. 10(-9) cm(3)/s and a progressive reduction within the first tens of nanoseconds. Comparison to the prototypical organic bulk heterojunction device PTB7:PC71BM yields important differences with regard to the mechanism and time scale of free carrier recombination. (C) 2016 AIP Publishing LLC.}, language = {en} } @misc{StolterfohtGrischekCaprioglioetal.2020, author = {Stolterfoht, Martin and Grischek, Max and Caprioglio, Pietro and Wolff, Christian Michael and Gutierrez-Partida, Emilio and Pe{\~n}a-Camargo, Francisco and Rothhardt, Daniel and Zhang, Shanshan and Raoufi, Meysam and Wolansky, Jakob and Abdi-Jalebi, Mojtaba and Stranks, Samuel D. and Albrecht, Steve and Kirchartz, Thomas and Neher, Dieter}, title = {How to quantify the efficiency potential of neat perovskite films}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {17}, issn = {1866-8372}, doi = {10.25932/publishup-51662}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516622}, pages = {12}, year = {2020}, abstract = {Perovskite photovoltaic (PV) cells have demonstrated power conversion efficiencies (PCE) that are close to those of monocrystalline silicon cells; however, in contrast to silicon PV, perovskites are not limited by Auger recombination under 1-sun illumination. Nevertheless, compared to GaAs and monocrystalline silicon PV, perovskite cells have significantly lower fill factors due to a combination of resistive and non-radiative recombination losses. This necessitates a deeper understanding of the underlying loss mechanisms and in particular the ideality factor of the cell. By measuring the intensity dependence of the external open-circuit voltage and the internal quasi-Fermi level splitting (QFLS), the transport resistance-free efficiency of the complete cell as well as the efficiency potential of any neat perovskite film with or without attached transport layers are quantified. Moreover, intensity-dependent QFLS measurements on different perovskite compositions allows for disentangling of the impact of the interfaces and the perovskite surface on the non-radiative fill factor and open-circuit voltage loss. It is found that potassium-passivated triple cation perovskite films stand out by their exceptionally high implied PCEs > 28\%, which could be achieved with ideal transport layers. Finally, strategies are presented to reduce both the ideality factor and transport losses to push the efficiency to the thermodynamic limit.}, language = {en} } @article{StolterfohtGrischekCaprioglioetal.2020, author = {Stolterfoht, Martin and Grischek, Max and Caprioglio, Pietro and Wolff, Christian Michael and Gutierrez-Partida, Emilio and Pe{\~n}a-Camargo, Francisco and Rothhardt, Daniel and Zhang, Shanshan and Raoufi, Meysam and Wolansky, Jakob and Abdi-Jalebi, Mojtaba and Stranks, Samuel D. and Albrecht, Steve and Kirchartz, Thomas and Neher, Dieter}, title = {How to quantify the efficiency potential of neat perovskite films}, series = {Advanced Materials}, volume = {32}, journal = {Advanced Materials}, number = {17}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.202000080}, pages = {1 -- 10}, year = {2020}, abstract = {Perovskite photovoltaic (PV) cells have demonstrated power conversion efficiencies (PCE) that are close to those of monocrystalline silicon cells; however, in contrast to silicon PV, perovskites are not limited by Auger recombination under 1-sun illumination. Nevertheless, compared to GaAs and monocrystalline silicon PV, perovskite cells have significantly lower fill factors due to a combination of resistive and non-radiative recombination losses. This necessitates a deeper understanding of the underlying loss mechanisms and in particular the ideality factor of the cell. By measuring the intensity dependence of the external open-circuit voltage and the internal quasi-Fermi level splitting (QFLS), the transport resistance-free efficiency of the complete cell as well as the efficiency potential of any neat perovskite film with or without attached transport layers are quantified. Moreover, intensity-dependent QFLS measurements on different perovskite compositions allows for disentangling of the impact of the interfaces and the perovskite surface on the non-radiative fill factor and open-circuit voltage loss. It is found that potassium-passivated triple cation perovskite films stand out by their exceptionally high implied PCEs > 28\%, which could be achieved with ideal transport layers. Finally, strategies are presented to reduce both the ideality factor and transport losses to push the efficiency to the thermodynamic limit.}, language = {en} } @article{WarbyZuZeiskeetal.2022, author = {Warby, Jonathan and Zu, Fengshuo and Zeiske, Stefan and Gutierrez-Partida, Emilio and Frohloff, Lennart and Kahmann, Simon and Frohna, Kyle and Mosconi, Edoardo and Radicchi, Eros and Lang, Felix and Shah, Sahil and Pena-Camargo, Francisco and Hempel, Hannes and Unold, Thomas and Koch, Norbert and Armin, Ardalan and De Angelis, Filippo and Stranks, Samuel D. and Neher, Dieter and Stolterfoht, Martin}, title = {Understanding performance limiting interfacial recombination in pin Perovskite solar cells}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202103567}, pages = {10}, year = {2022}, abstract = {Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto-electronic properties and their successful integration into multijunction cells. However, the performance of single- and multijunction cells is largely limited by significant nonradiative recombination at the perovskite/organic electron transport layer junctions. In this work, the cause of interfacial recombination at the perovskite/C-60 interface is revealed via a combination of photoluminescence, photoelectron spectroscopy, and first-principle numerical simulations. It is found that the most significant contribution to the total C-60-induced recombination loss occurs within the first monolayer of C-60, rather than in the bulk of C-60 or at the perovskite surface. The experiments show that the C-60 molecules act as deep trap states when in direct contact with the perovskite. It is further demonstrated that by reducing the surface coverage of C-60, the radiative efficiency of the bare perovskite layer can be retained. The findings of this work pave the way toward overcoming one of the most critical remaining performance losses in perovskite solar cells.}, language = {en} }