@article{PhuongHosseiniSandbergetal.2020, author = {Phuong, Le Quang and Hosseini, Seyed Mehrdad and Sandberg, Oskar J. and Zou, Yingping and Woo, Han Young and Neher, Dieter and Shoaee, Safa}, title = {Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells}, series = {Solar RRL}, volume = {5}, journal = {Solar RRL}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.202000649}, pages = {6}, year = {2020}, abstract = {The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.}, language = {en} } @article{HosseiniTokmoldinLeeetal.2020, author = {Hosseini, Seyed Mehrdad and Tokmoldin, Nurlan and Lee, Young Woong and Zou, Yingping and Woo, Han Young and Neher, Dieter and Shoaee, Safa}, title = {Putting order into PM6:Y6 solar cells to reduce the langevin recombination in 400 nm thick junction}, series = {Solar RRL}, volume = {4}, journal = {Solar RRL}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.202000498}, pages = {7}, year = {2020}, abstract = {Increasing the active layer thickness without sacrificing the power conversion efficiency (PCE) is one of the great challenges faced by organic solar cells (OSCs) for commercialization. Recently, PM6:Y6 as an OSC based on a non-fullerene acceptor (NFA) has excited the community because of its PCE reaching as high as 15.9\%; however, by increasing the thickness, the PCE drops due to the reduction of the fill factor (FF). This drop is attributed to change in mobility ratio with increasing thickness. Furthermore, this work demonstrates that by regulating the packing and the crystallinity of the donor and the acceptor, through volumetric content of chloronaphthalene (CN) as a solvent additive, one can improve the FF of a thick PM6:Y6 device (approximate to 400 nm) from 58\% to 68\% (PCE enhances from 12.2\% to 14.4\%). The data indicate that the origin of this enhancement is the reduction of the structural and energetic disorders in the thick device with 1.5\% CN compared with 0.5\% CN. This correlates with improved electron and hole mobilities and a 50\% suppressed bimolecular recombination, such that the non-Langevin reduction factor is 180 times. This work reveals the role of disorder on the charge extraction and bimolecular recombination of NFA-based OSCs.}, language = {en} } @article{SandbergKurpiersStolterfohtetal.2020, author = {Sandberg, Oskar J. and Kurpiers, Jona and Stolterfoht, Martin and Neher, Dieter and Meredith, Paul and Shoaee, Safa and Armin, Ardalan}, title = {On the question of the need for a built-in potential in Perovskite solar cells}, series = {Advanced materials interfaces}, volume = {7}, journal = {Advanced materials interfaces}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.202000041}, pages = {8}, year = {2020}, abstract = {Perovskite semiconductors as the active materials in efficient solar cells exhibit free carrier diffusion lengths on the order of microns at low illumination fluxes and many hundreds of nanometers under 1 sun conditions. These lengthscales are significantly larger than typical junction thicknesses, and thus the carrier transport and charge collection should be expected to be diffusion controlled. A consensus along these lines is emerging in the field. However, the question as to whether the built-in potential plays any role is still of matter of some conjecture. This important question using phase-sensitive photocurrent measurements and theoretical device simulations based upon the drift-diffusion framework is addressed. In particular, the role of the built-in electric field and charge-selective transport layers in state-of-the-art p-i-n perovskite solar cells comparing experimental findings and simulation predictions is probed. It is found that while charge collection in the junction does not require a drift field per se, a built-in potential is still needed to avoid the formation of reverse electric fields inside the active layer, and to ensure efficient extraction through the charge transport layers.}, language = {en} } @article{SamsonRechPerdigonToroetal.2020, author = {Samson, Stephanie and Rech, Jeromy and Perdigon-Toro, Lorena and Peng, Zhengxing and Shoaee, Safa and Ade, Harald and Neher, Dieter and Stolterfoht, Martin and You, Wei}, title = {Organic solar cells with large insensitivity to donor polymer molar mass across all acceptor classes}, series = {ACS applied polymer materials}, volume = {2}, journal = {ACS applied polymer materials}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {2637-6105}, doi = {10.1021/acsapm.0c01041}, pages = {5300 -- 5308}, year = {2020}, abstract = {Donor polymer number-average molar mass (M-n) has long been known to influence organic photovoltaic (OPV) performance via changes in both the polymer properties and the resulting bulk heterojunction morphology. The exact nature of these M-n effects varies from system to system, although there is generally some intermediate M-n that results in optimal performance. Interestingly, our earlier work with the difluorobenzotriazole (FTAZ)-based donor polymer, paired with either N2200 (polymer acceptor) or PC61BM (fullerene acceptor), PcBm demonstrated <10\% variation in power conversion efficiency and a consistent morphology over a large span of M-n (30 kg/mol to over 100 kg/mol). Would such insensitivity to polymer M-n still hold true when prevailing small molecular acceptors were used with FTAZ? To answer this question, we explored the impact of FTAZ on OPVs with ITIC, a high-performance small-molecule fused-ring electron acceptor (FREA). By probing the photovoltaic characteristics of the resulting OPVs, we show that a similar FTAZ mn insensitivity is also found in the FTAZ:ITIC system. This study highlights a single-donor polymer which, when paired with an archetypal fullerene, polymer, and FREA, results in systems that are largely insensitive to donor M. Our results may have implications in polymer batch-to-batch reproducibility, in particular, relaxing the need for tight M-n control during synthesis.}, language = {en} } @misc{PhuongHosseiniSandbergetal.2020, author = {Phuong, Le Quang and Hosseini, Seyed Mehrdad and Sandberg, Oskar J. and Zou, Yingping and Woo, Han Young and Neher, Dieter and Shoaee, Safa}, title = {Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-57001}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570018}, pages = {8}, year = {2020}, abstract = {The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.}, language = {en} } @article{PerdigonToroZhangMarkinaetal.2020, author = {Perdigon-Toro, Lorena and Zhang, Huotian and Markina, Anastaa si and Yuan, Jun and Hosseini, Seyed Mehrdad and Wolff, Christian Michael and Zuo, Guangzheng and Stolterfoht, Martin and Zou, Yingping and Gao, Feng and Andrienko, Denis and Shoaee, Safa and Neher, Dieter}, title = {Barrierless free charge generation in the high-performance PM6:Y6 bulk heterojunction non-fullerene solar cell}, series = {Advanced materials}, volume = {32}, journal = {Advanced materials}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201906763}, pages = {9}, year = {2020}, abstract = {Organic solar cells are currently experiencing a second golden age thanks to the development of novel non-fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy. Results show that photocurrent generation is essentially barrierless with near-unity efficiency, regardless of excitation energy. Efficient charge separation is maintained over a wide temperature range, down to 100 K, despite the small driving force for charge generation. Studies on a blend with a low concentration of the NFA, measurements of the energetic disorder, and theoretical modeling suggest that CT state dissociation is assisted by the electrostatic interfacial field which for Y6 is large enough to compensate the Coulomb dissociation barrier.}, language = {en} } @article{TokmoldinHosseiniRaoufietal.2020, author = {Tokmoldin, Nurlan and Hosseini, Seyed Mehrdad and Raoufi, Meysam and Phuong, Le Quang and Sandberg, Oskar J. and Guan, Huilan and Zou, Yingping and Neher, Dieter and Shoaee, Safa}, title = {Extraordinarily long diffusion length in PM6:Y6 organic solar cells}, series = {Journal of materials chemistry : A, materials for energy and sustainability}, volume = {8}, journal = {Journal of materials chemistry : A, materials for energy and sustainability}, number = {16}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7488}, doi = {10.1039/d0ta03016c}, pages = {7854 -- 7860}, year = {2020}, abstract = {The PM6:Y6 bulk-heterojunction (BHJ) blend system achieves high short-circuit current (J(SC)) values in thick photovoltaic junctions. Here we analyse these solar cells to understand the observed independence of the short-circuit current upon photoactive layer thickness. We employ a range of optoelectronic measurements and analyses, including Mott-Schottky analysis, CELIV, photoinduced absorption spectroscopy, mobility measurements and simulations, to conclude that, the invariant photocurrent for the devices with different active layer thicknesses is associated with the Y6's diffusion length exceeding 300 nm in case of a 300 nm thick cell. This is despite unintentional doping that occurs in PM6 and the associated space-charge effect, which is expected to be even more profound upon photogeneration. This extraordinarily long diffusion length - which is an order of magnitude larger than typical values for organics - dominates transport in the flat-band region of thick junctions. Our work suggests that the performance of the doped PM6:Y6 organic solar cells resembles that of inorganic devices with diffusion transport playing a pivotal role. Ultimately, this is expected to be a key requirement for the fabrication of efficient, high-photocurrent, thick organic solar cells.}, language = {en} }