@article{MurawskiBuergerVorogushynetal.2016, author = {Murawski, Aline and B{\"u}rger, Gerd and Vorogushyn, Sergiy and Merz, Bruno}, title = {Can local climate variability be explained by weather patterns? A multi-station evaluation for the Rhine basin}, series = {Hydrology and earth system sciences : HESS}, volume = {20}, journal = {Hydrology and earth system sciences : HESS}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-20-4283-2016}, pages = {4283 -- 4306}, year = {2016}, abstract = {To understand past flood changes in the Rhine catchment and in particular the role of anthropogenic climate change in extreme flows, an attribution study relying on a proper GCM (general circulation model) downscaling is needed. A downscaling based on conditioning a stochastic weather generator on weather patterns is a promising approach. This approach assumes a strong link between weather patterns and local climate, and sufficient GCM skill in reproducing weather pattern climatology. These presuppositions are unprecedentedly evaluated here using 111 years of daily climate data from 490 stations in the Rhine basin and comprehensively testing the number of classification parameters and GCM weather pattern characteristics. A classification based on a combination of mean sea level pressure, temperature, and humidity from the ERA20C reanalysis of atmospheric fields over central Europe with 40 weather types was found to be the most appropriate for stratifying six local climate variables. The corresponding skill is quite diverse though, ranging from good for radiation to poor for precipitation. Especially for the latter it was apparent that pressure fields alone cannot sufficiently stratify local variability. To test the skill of the latest generation of GCMs from the CMIP5 ensemble in reproducing the frequency, seasonality, and persistence of the derived weather patterns, output from 15 GCMs is evaluated. Most GCMs are able to capture these characteristics well, but some models showed consistent deviations in all three evaluation criteria and should be excluded from further attribution analysis.}, language = {en} } @article{MurawskiVorogushynBuergeretal.2018, author = {Murawski, Aline and Vorogushyn, Sergiy and B{\"u}rger, Gerd and Gerlitz, Lars and Merz, Bruno}, title = {Do changing weather types explain observed climatic trends in the rhine basin?}, series = {Journal of geophysical of geophysical research-atmosheres}, volume = {123}, journal = {Journal of geophysical of geophysical research-atmosheres}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-897X}, doi = {10.1002/2017JD026654}, pages = {1562 -- 1584}, year = {2018}, abstract = {For attributing hydrological changes to anthropogenic climate change, catchment models are driven by climate model output. A widespread approach to bridge the spatial gap between global climate and hydrological catchment models is to use a weather generator conditioned on weather patterns (WPs). This approach assumes that changes in local climate are characterized by between-type changes of patterns. In this study we test this assumption by analyzing a previously developed WP classification for the Rhine basin, which is based on dynamic and thermodynamic variables. We quantify changes in pattern characteristics and associated climatic properties. The amount of between- and within-type changes is investigated by comparing observed trends to trends resulting solely from WP occurrence. To overcome uncertainties in trend detection resulting from the selected time period, all possible periods in 1901-2010 with a minimum length of 31 years are analyzed. Increasing frequency is found for some patterns associated with high precipitation, although the trend sign highly depends on the considered period. Trends and interannual variations of WP frequencies are related to the long-term variability of large-scale circulation modes. Long-term WP internal warming is evident for summer patterns and enhanced warming for spring/autumn patterns since the 1970s. Observed trends in temperature and partly in precipitation are mainly associated with frequency changes of specific WPs, but some amount of within-type changes remains. The classification can be used for downscaling of past changes considering this limitation, but the inclusion of thermodynamic variables into the classification impedes the downscaling of future climate projections.}, language = {en} } @article{DelgadoVossBuergeretal.2018, author = {Delgado, Jos{\´e} Miguel Martins and Voss, Sebastian and B{\"u}rger, Gerd and Vormoor, Klaus Josef and Murawski, Aline and Rodrigues Pereira, Jos{\´e} Marcelo and Martins, Eduardo and Vasconcelos J{\´u}nior, Francisco and Francke, Till}, title = {Seasonal drought prediction for semiarid northeastern Brazil}, series = {Hydrology and Earth System Sciences}, volume = {22}, journal = {Hydrology and Earth System Sciences}, number = {9}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-22-5041-2018}, pages = {5041 -- 5056}, year = {2018}, abstract = {A set of seasonal drought forecast models was assessed and verified for the Jaguaribe River in semiarid northeastern Brazil. Meteorological seasonal forecasts were provided by the operational forecasting system used at FUNCEME (Cear{\´a}'s research foundation for meteorology)and by the European Centre for Medium-Range Weather Forecasts (ECMWF). Three downscaling approaches (empirical quantile mapping, extended downscaling and weather pattern classification) were tested and combined with the models in hindcast mode for the period 1981 to 2014. The forecast issue time was January and the forecast period was January to June. Hydrological drought indices were obtained by fitting a multivariate linear regression to observations. In short, it was possible to obtain forecasts for (a) monthly precipitation,(b) meteorological drought indices, and (c) hydrological drought indices. The skill of the forecasting systems was evaluated with regard to root mean square error (RMSE), the Brier skill score (BSS) and the relative operating characteristic skill score (ROCSS). The tested forecasting products showed similar performance in the analyzed metrics. Forecasts of monthly precipitation had little or no skill considering RMSE and mostly no skill with BSS. A similar picture was seen when forecasting meteorological drought indices: low skill regarding RMSE and BSS and significant skill when discriminating hit rate and false alarm rate given by the ROCSS (forecasting drought events of, e.g., SPEI1 showed a ROCSS of around 0.5). Regarding the temporal variation of the forecast skill of the meteorological indices, it was greatest for April, when compared to the remaining months of the rainy season, while the skill of reservoir volume forecasts decreased with lead time. This work showed that a multi-model ensemble can forecast drought events of timescales relevant to water managers in northeastern Brazil with skill. But no or little skill could be found in the forecasts of monthly precipitation or drought indices of lower scales, like SPI1. Both this work and those here revisited showed that major steps forward are needed in forecasting the rainy season in northeastern Brazil.}, language = {en} }