@article{MorgnerBennemannCywińskietal.2017, author = {Morgner, Frank and Bennemann, Mark and Cywiński, Piotr J. and Kollosche, Matthias and G{\´o}rski, Krzysztof and Pietraszkiewicz, Marek and Geßner, Andr{\´e} and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Elastic FRET sensors for contactless pressure measurement}, series = {RSC Advances : an international journal to further the chemical sciences}, volume = {7}, journal = {RSC Advances : an international journal to further the chemical sciences}, publisher = {RSC Publishing}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c7ra06379b}, pages = {50578 -- 50583}, year = {2017}, abstract = {Contactless pressure monitoring based on Forster resonance energy transfer between donor/acceptor pairs immobilized within elastomers is demonstrated. The donor/acceptor energy transfer is employed by dispersing terbium(III) tris[(2-hydroxybenzoyl)-2-aminoethyl] amine complex (LLC, donor) and CdSe/ZnS quantum dots (QD655, acceptor) in styrene-ethylene/buthylene-styrene (SEBS) and poly(dimethylsiloxane) (PDMS). The continuous monitoring of QD luminescence showed a reversible intensity change as the pressure signal is alternated between two stable states indicating a pressure sensitivity of 6350 cps kPa(-1). Time-resolved measurements show the pressure impact on the FRET signal due to an increase of decay time (270 ms up to 420 ms) for the donor signal and parallel drop of decay time (170 mu s to 155 mu s) for the acceptor signal as the net pressure applied. The LLC/QD655 sensors enable a contactless readout as well as space resolved monitoring to enable miniaturization towards smaller integrated stretchable opto-electronics. Elastic FRET sensors can potentially lead to developing profitable analysis systems capable to outdo conventional wired electronic systems (inductive, capacitive, ultrasonic and photoelectric sensors) especially for point-of-care diagnostics, biological monitoring required for wearable electronics.}, language = {en} } @article{MorgnerStuflerGeissleretal.2011, author = {Morgner, Frank and Stufler, Stefan and Geissler, Daniel and Medintz, Igor L. and Algar, W. Russ and Susumu, Kimihiro and Stewart, Michael H. and Blanco-Canosa, Juan B. and Dawson, Philip E. and Hildebrandt, Niko}, title = {Terbium to quantum dot FRET Bioconjugates for clinical diagnostics influence of human plasma on optical and assembly properties}, series = {Sensors}, volume = {11}, journal = {Sensors}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s111009667}, pages = {9667 -- 9684}, year = {2011}, abstract = {Forster resonance energy transfer (FRET) from luminescent terbium complexes (LTC) as donors to semiconductor quantum dots (QDs) as acceptors allows extraordinary large FRET efficiencies due to the long Forster distances afforded. Moreover, time-gated detection permits an efficient suppression of autofluorescent background leading to sub-picomolar detection limits even within multiplexed detection formats. These characteristics make FRET-systems with LTC and QDs excellent candidates for clinical diagnostics. So far, such proofs of principle for highly sensitive multiplexed biosensing have only been performed under optimized buffer conditions and interactions between real-life clinical media such as human serum or plasma and LTC-QD-FRET-systems have not yet been taken into account. Here we present an extensive spectroscopic analysis of absorption, excitation and emission spectra along with the luminescence decay times of both the single components as well as the assembled FRET-systems in TRIS-buffer, TRIS-buffer with 2\% bovine serum albumin, and fresh human plasma. Moreover, we evaluated homogeneous LTC-QD FRET assays in QD conjugates assembled with either the well-known, specific biotin-streptavidin biological interaction or, alternatively, the metal-affinity coordination of histidine to zinc. In the case of conjugates assembled with biotin-streptavidin no significant interference with the optical and binding properties occurs whereas the histidine-zinc system appears to be affected by human plasma.}, language = {en} } @phdthesis{Morgner2012, author = {Morgner, Frank}, title = {Quantenpunktbasiertes spektroskopisches Lineal mit Terbium-Komplexen als Donoren f{\"u}r optische FRET-Multiplexmessungen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63576}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Der F{\"o}rster-Resonanzenergietransfer (FRET) liefert einen wichtigen Beitrag bei der Untersuchung kleinskaliger biologischer Systeme und Prozesse. M{\"o}glich wird dies durch die r-6-Abh{\"a}ngigkeit des FRET, die es erlaubt Abst{\"a}nde und strukturelle {\"A}nderungen weit unterhalb der Beugungsgrenze des Lichts mit hoher Sensitivit{\"a}t und geringem Aufwand zu bestimmen. Die besonderen photophysikalischen Eigenschaften von Terbiumkomplexen (LTC) und Quantenpunkten (QD) machen sie zu geeigneten Kandidaten f{\"u}r hochsensitive und st{\"o}rungsarme Multiplex-Abstandsmessungen in biologischen Systemen und Prozessen. Die Abstandsbestimmungen setzen jedoch eine genaueste Kenntnis des Mechanismus des Energietransfers von LTC auf QD ebenso voraus, wie das Wissen um Gr{\"o}ße und Gestalt letzterer. Quantenpunkte haben im Vergleich zu biologischen Strukturen {\"a}hnliche Dimensionen und k{\"o}nnen nicht als punktf{\"o}rmig betrachtet werden, wie es bei einfacheren Farbstoffen m{\"o}glich ist. Durch ihre Form kommt es zu einer Abstandsverteilung innerhalb des Donor-Akzeptorsystems. Dies beeinflusst den Energietransfer und damit die experimentellen Ergebnisse. In dieser Arbeit wurde der Energietransfer von LTC auf QD untersucht, um zu einer Aussage hinsichtlich des Mechanismus der Energie{\"u}bertragung und der dabei zu ber{\"u}cksichtigenden photophysikalischen und strukturellen Parameter von LTC und QD zu gelangen. Mit der Annahme einer Abstandsverteilung sollten die Gr{\"o}ßen der Quantenpunkte bestimmt und der Einfluss von Form und Gestalt auf den Energietransfer betrachtet werden. Die notwendigen theoretischen und praktischen Grundlagen wurden eingangs dargestellt. Daran schlossen sich Messungen zur photophysikalischen Charakterisierung der Donoren und Akzeptoren an, die Grundlage der Berechnung der FRET-Parameter waren. Die F{\"o}rster-Radien zeigten die f{\"u}r den FRET von LTC auf QD typischen extrem hohen Werte von bis zu 11 nm. Zeitaufgel{\"o}ste Messungen der FRET-induzierten Lumineszenz der Donoren und Akzeptoren in den beiden biomolekularen Modellsystemen Zink-Histidin und Biotin-Streptavidin beschlossen den praktischen Teil. Als Donor wurde Lumi4Tb gebunden an ein Peptid bzw. Streptavidin genutzt, Akzeptoren waren f{\"u}nf verschiedene, kommerziell erh{\"a}ltliche Quantenpunkte mit Carboxyl- bzw. Biotinfunktionalisierung. Bei allen Donor-Akzeptor-Paarungen konnte FRET beobachtet und ausgewertet werden. Es konnte gezeigt werden, dass die gesamte Emission des Terbiums zum Energietransfer beitr{\"a}gt und der Orientierungsfaktor ² den Wert 2/3 annimmt. Die Charakterisierung der Bindungsverh{\"a}ltnisse innerhalb der FRET-Paare von LTC und QD {\"u}ber Verteilungsfunktionen bietet {\"u}ber die Form der Verteilungskurve die M{\"o}glichkeit Aussagen {\"u}ber die Gestalt der FRET-Partner zu treffen. So war es m{\"o}glich, die mittlere Form der Quantenpunkte als Sph{\"a}re zu bestimmen. Dies entsprach, insbesondere bei den in z-Richtung des Kristallgitters elongierten Quantenpunkten, nicht den Erwartungen. Dieser Befund erm{\"o}glicht daher bei zuk{\"u}nftigen Messungen eine Verbesserung der Genauigkeit bei Abstandsbestimmungen mit Quantenpunkten. Neben der Ermittlung der die FRET-Verteilung bestimmenden Gestalt der Quantenpunkte konnte im Rahmen dieser Arbeit anhand vergleichender Messungen die Dicke der Polymerh{\"u}lle der QD bestimmt und so gezeigt werden, dass FRET-Paare aus lumineszenten Terbiumkomplexen und Quantenpunkten in der Lage sind, Abst{\"a}nde im Nano- bis Sub-Nanometerbereich aufzul{\"o}sen.}, language = {de} } @article{MorgnerLecointreCharbonniereetal.2015, author = {Morgner, Frank and Lecointre, Alexandre and Charbonniere, Loic J. and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Detecting free hemoglobin in blood plasma and serum with luminescent terbium complexes}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c4cp04206a}, pages = {1740 -- 1745}, year = {2015}, abstract = {Hemolysis, the rupturing of red blood cells, can result from numerous medical conditions (in vivo) or occur after collecting blood specimen or extracting plasma and serum out of whole blood (in vitro). In clinical laboratory practice, hemolysis can be a serious problem due to its potential to bias detection of various analytes or biomarkers. Here we present the first "mix-and-measure' method to assess the degree of hemolysis in biosamples using luminescence spectroscopy. Luminescent terbium complexes (LTC) were studied in the presence of free hemoglobin (Hb) as indicators for hemolysis in TRIS-buffer, and in fresh human plasma with absorption, excitation and emission measurements. Our findings indicate dynamic as well as resonance energy transfer (FRET) between the LTC and the porphyrin ligand of hemoglobin. This transfer leads to a decrease in luminescence intensity and decay time even at nanomolar hemoglobin concentrations either in buffer or plasma. Luminescent terbium complexes are very sensitive to free hemoglobin in buffer and blood plasma. Due to the instant change in luminescence properties of the LTC in presence of Hb it is possible to access the concentration of hemoglobin via spectroscopic methods without incubation time or further treatment of the sample thus enabling a rapid and sensitive detection of hemolysis in clinical diagnostics.}, language = {en} } @misc{MorgnerLecointreCharbonniereetal.2014, author = {Morgner, Frank and Lecointre, Alexandre and Charbonni{\`e}re, Loic J. and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Detecting free hemoglobin in blood plasma and serum with luminescent terbium complexes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99485}, pages = {6}, year = {2014}, abstract = {Hemolysis, the rupturing of red blood cells, can result from numerous medical conditions (in vivo) or occur after collecting blood specimen or extracting plasma and serum out of whole blood (in vitro). In clinical laboratory practice, hemolysis can be a serious problem due to its potential to bias detection of various analytes or biomarkers. Here we present the first ''mix-and-measure'' method to assess the degree of hemolysis in biosamples using luminescence spectroscopy. Luminescent terbium complexes (LTC) were studied in the presence of free hemoglobin (Hb) as indicators for hemolysis in TRIS-buffer, and in fresh human plasma with absorption, excitation and emission measurements. Our findings indicate dynamic as well as resonance energy transfer (FRET) between the LTC and the porphyrin ligand of hemoglobin. This transfer leads to a decrease in luminescence intensity and decay time even at nanomolar hemoglobin concentrations either in buffer or plasma. Luminescent terbium complexes are very sensitive to free hemoglobin in buffer and blood plasma. Due to the instant change in luminescence properties of the LTC in presence of Hb it is possible to access the concentration of hemoglobin via spectroscopic methods without incubation time or further treatment of the sample thus enabling a rapid and sensitive detection of hemolysis in clinical diagnostics.}, language = {en} }