@article{AlrefaiMondalWrucketal.2019, author = {Alrefai, Anas and Mondal, Suvendu Sekhar and Wruck, Alexander and Kelling, Alexandra and Schilde, Uwe and Brandt, Philipp and Janiak, Christoph and Schoenfeld, Sophie and Weber, Birgit and Rybakowski, Lawrence and Herrman, Carmen and Brennenstuhl, Katlen and Eidner, Sascha and Kumke, Michael Uwe and Behrens, Karsten and G{\"u}nter, Christina and M{\"u}ller, Holger and Holdt, Hans-J{\"u}rgen}, title = {Hydrogen-bonded supramolecular metal-imidazolate frameworks: gas sorption, magnetic and UV/Vis spectroscopic properties}, series = {Journal of Inclusion Phenomena and Macrocyclic Chemistry}, volume = {94}, journal = {Journal of Inclusion Phenomena and Macrocyclic Chemistry}, number = {3-4}, publisher = {Springer}, address = {Dordrecht}, issn = {1388-3127}, doi = {10.1007/s10847-019-00926-6}, pages = {155 -- 165}, year = {2019}, abstract = {By varying reaction parameters for the syntheses of the hydrogen-bonded metal-imidazolate frameworks (HIF) HIF-1 and HIF-2 (featuring 14 Zn and 14 Co atoms, respectively) to increase their yields and crystallinity, we found that HIF-1 is generated in two different frameworks, named as HIF-1a and HIF-1b. HIF-1b is isostructural to HIF-2. We determined the gas sorption and magnetic properties of HIF-2. In comparison to HIF-1a (Brunauer-Emmett-Teller (BET) surface area of 471m(2) g(-1)), HIF-2 possesses overall very low gas sorption uptake capacities [BET(CO2) surface area=85m(2) g(-1)]. Variable temperature magnetic susceptibility measurement of HIF-2 showed antiferromagnetic exchange interactions between the cobalt(II) high-spin centres at lower temperature. Theoretical analysis by density functional theory confirmed this finding. The UV/Vis-reflection spectra of HIF-1 (mixture of HIF-1a and b), HIF-2 and HIF-3 (with 14 Cd atoms) were measured and showed a characteristic absorption band centered at 340nm, which was indicative for differences in the imidazolate framework.}, language = {en} } @article{MondalThomasHoldt2015, author = {Mondal, Suvendu Sekhar and Thomas, Arne and Holdt, Hans-J{\"u}rgen}, title = {In situ synthesis of amide-imidate-imidazolate ligand and formation of metal-organic frameworks: Application for gas storage}, series = {Microporous and mesoporous materials : zeolites, clays, carbons and related materials}, volume = {216}, journal = {Microporous and mesoporous materials : zeolites, clays, carbons and related materials}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1387-1811}, doi = {10.1016/j.micromeso.2015.01.049}, pages = {2 -- 12}, year = {2015}, abstract = {In this review article, we highlight the synthesis, structures and gas-sorption properties of a series of nine isostructural IFPs (IFP = Imidazolate Framework Potsdam) and two H-bonded networks. IFPs were synthesized by in situ partial hydrolysis of a 4,5-dicyanoimidazole under solvothermal conditions and hence an imidazolate-4-amide-5-imidate linker (C5H3N4O2) was generated, forming the metal -amide-imidate-imidazolateframeworks [M(C5H3N4O2)-R]. Varying R in the 2-substitued linker (R = Me, Cl, Br, Et, OMe and OEt) and metal centre (M2+ = zinc and cobalt) allowed the variation in channel diameter (4.2-03 angstrom) and a fine-tuning of the polarity and functionality of the channel walls of IFPs. Furthermore, we show that using ethyl or alkoxy substituted IFPs the flexible groups act as molecular gates for guest molecules. This allows highly selective CO2 sorption over Ny and CH4 gases. Moreover, during the synthesis of methoxy substituted IFPs (IFP-7 and -8), an imidazolate-4,5-diamide-2-olate linker (C5H4N4O3) formed in situ leads to the formation of a molecular building block (MBB) with a M-6 octahedron inscribed in a M-8 cube (M Zn2+ and Co2+). The MBBs connect by amide amide hydrogen bonds to a 3D robust supramolecular networks [Zn-14(C5H4N4O3)(12)(O) (OH)(2) (DMF)(4) denoted as 1 and 2, respectively, DMF = N,N'-dimethylformamide], which can be activated for N-2, CO2, CH4, and H-2 gas-sorption. (C) 2015 Elsevier Inc. All rights reserved.}, language = {en} }