@article{HeuerMenzelMilonni2015, author = {Heuer, Axel and Menzel, Ralf and Milonni, P. W.}, title = {Complementarity in biphoton generation with stimulated or induced coherence}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {92}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {1050-2947}, doi = {10.1103/PhysRevA.92.033834}, pages = {8}, year = {2015}, abstract = {Coherence can be induced or stimulated in parametric down-conversion using two or three crystals when, for example, the idler modes of the crystals are aligned. Previous experiments with induced coherence [Phys. Rev. Lett. 114, 053601 (2015)] focused on which-path information and the role of vacuum fields in realizing complementarity via reduced visibility in single-photon interference. Here we describe experiments comparing induced and stimulated coherence. Different single-photon interference experiments were performed by blocking one of the pump beams in a three-crystal setup. Each counted photon is emitted from one of two crystals and which-way information may or not be available, depending on the setup. Distinctly different results are obtained in the induced and stimulated cases, especially when a variable transmission filter is inserted between the crystals. A simplified theoretical model accounts for all the experimental results and is also used to address the question of whether the phases of the signal and idler fields in parametric down-conversion are correlated.}, language = {en} } @article{HeuerMenzelMilonni2015, author = {Heuer, A. and Menzel, R. and Milonni, P. W.}, title = {Induced Coherence, Vacuum Fields, and Complementarity in Biphoton Generation}, series = {Physical review letters}, volume = {114}, journal = {Physical review letters}, number = {5}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.114.053601}, pages = {5}, year = {2015}, abstract = {It is well established that spontaneous parametric down-conversion with induced coherence across two coupled interferometers results in high-visibility single-photon interference. We describe experiments in which additional photon channels are introduced such that "which-path" information is made possible and the fringe visibility in single-photon interference is reduced in accordance with basic notions of complementarity. However, these additional pathways result in nearly perfect visibility when photons are counted in coincidence. A simplified theoretical model accounts for these observations and attributes them directly to the vacuum fields at the different crystals.}, language = {en} }