@article{SarmentoJeltschThuilleretal.2013, author = {Sarmento, Juliano Sarmento and Jeltsch, Florian and Thuiller, Wilfried and Higgins, Steven and Midgley, Guy F. and Rebelo, Anthony G. and Rouget, Mathieu and Schurr, Frank Martin}, title = {Impacts of past habitat loss and future climate change on the range dynamics of South African Proteaceae}, series = {Diversity \& distributions : a journal of biological invasions and biodiversity}, volume = {19}, journal = {Diversity \& distributions : a journal of biological invasions and biodiversity}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1366-9516}, doi = {10.1111/ddi.12011}, pages = {363 -- 376}, year = {2013}, abstract = {Aim To assess how habitat loss and climate change interact in affecting the range dynamics of species and to quantify how predicted range dynamics depend on demographic properties of species and the severity of environmental change. Location South African Cape Floristic Region. Methods We use data-driven demographic models to assess the impacts of past habitat loss and future climate change on range size, range filing and abundances of eight species of woody plants (Proteaceae). The species-specific models employ a hybrid approach that simulates population dynamics and long-distance dispersal on top of expected spatio-temporal dynamics of suitable habitat. Results Climate change was mainly predicted to reduce range size and range filling (because of a combination of strong habitat shifts with low migration ability). In contrast, habitat loss mostly decreased mean local abundance. For most species and response measures, the combination of habitat loss and climate change had the most severe effect. Yet, this combined effect was mostly smaller than expected from adding or multiplying effects of the individual environmental drivers. This seems to be because climate change shifts suitable habitats to regions less affected by habitat loss. Interspecific variation in range size responses depended mostly on the severity of environmental change, whereas responses in range filling and local abundance depended mostly on demographic properties of species. While most surviving populations concentrated in areas that remain climatically suitable, refugia for multiple species were overestimated by simply overlying habitat models and ignoring demography. Main conclusions Demographic models of range dynamics can simultaneously predict the response of range size, abundance and range filling to multiple drivers of environmental change. Demographic knowledge is particularly needed to predict abundance responses and to identify areas that can serve as biodiversity refugia under climate change. These findings highlight the need for data-driven, demographic assessments in conservation biogeography.}, language = {en} } @article{SarmentoBondMidgleyetal.2011, author = {Sarmento, Juliano Sarmento and Bond, William J. and Midgley, Guy F. and Rebelo, Anthony G. and Thuiller, Wilfried and Schurr, Frank Martin}, title = {Effects of harvesting flowers from shrubs on the persistence and abundance of wild shrub populations at multiple spatial extents}, series = {Conservation biology : the journal of the Society for Conservation Biology}, volume = {25}, journal = {Conservation biology : the journal of the Society for Conservation Biology}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0888-8892}, doi = {10.1111/j.1523-1739.2010.01628.x}, pages = {73 -- 84}, year = {2011}, abstract = {Wildflower harvesting is an economically important activity of which the ecological effects are poorly understood. We assessed how harvesting of flowers affects shrub persistence and abundance at multiple spatial extents. To this end, we built a process-based model to examine the mean persistence and abundance of wild shrubs whose flowers are subject to harvest (serotinous Proteaceae in the South African Cape Floristic Region). First, we conducted a general sensitivity analysis of how harvesting affects persistence and abundance at nested spatial extents. For most spatial extents and combinations of demographic parameters, persistence and abundance of flowering shrubs decreased abruptly once harvesting rate exceeded a certain threshold. At larger extents, metapopulations supported higher harvesting rates before their persistence and abundance decreased, but persistence and abundance also decreased more abruptly due to harvesting than at smaller extents. This threshold rate of harvest varied with species' dispersal ability, maximum reproductive rate, adult mortality, probability of extirpation or local extinction, strength of Allee effects, and carrying capacity. Moreover, spatial extent interacted with Allee effects and probability of extirpation because both these demographic properties affected the response of local populations to harvesting more strongly than they affected the response of metapopulations. Subsequently, we simulated the effects of harvesting on three Cape Floristic Region Proteaceae species and found that these species reacted differently to harvesting, but their persistence and abundance decreased at low rates of harvest. Our estimates of harvesting rates at maximum sustainable yield differed from those of previous investigations, perhaps because researchers used different estimates of demographic parameters, models of population dynamics, and spatial extent than we did. Good demographic knowledge and careful identification of the spatial extent of interest increases confidence in assessments and monitoring of the effects of harvesting. Our general sensitivity analysis improved understanding of harvesting effects on metapopulation dynamics and allowed qualitative assessment of the probability of extirpation of poorly studied species.}, language = {en} }