@article{MuenchKipfstuhlFreitagetal.2017, author = {Muench, Thomas and Kipfstuhl, Sepp and Freitag, Johannes and Meyer, Hanno and Laepple, Thomas}, title = {Constraints on post-depositional isotope modifications in East Antarctic firn from analysing temporal changes of isotope profiles}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {11}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-11-2175-2017}, pages = {2175 -- 2188}, year = {2017}, abstract = {The isotopic composition of water in ice sheets is extensively used to infer past climate changes. In low-accumulation regions their interpretation is, however, challenged by poorly constrained effects that may influence the initial isotope signal during and after deposition of the snow. This is reflected in snow-pit isotope data from Kohnen Station, Antarctica, which exhibit a seasonal cycle but also strong interannual variations that contradict local temperature observations. These inconsistencies persist even after averaging many profiles and are thus not explained by local stratigraphic noise. Previous studies have suggested that post-depositional processes may significantly influence the isotopic composition of East Antarctic firn. Here, we investigate the importance of post-depositional processes within the open-porous firn (greater than or similar to 10 cm depth) at Kohnen Station by separating spatial from temporal variability. To this end, we analyse 22 isotope profiles obtained from two snow trenches and examine the temporal isotope modifications by comparing the new data with published trench data extracted 2 years earlier. The initial isotope profiles undergo changes over time due to downward advection, firn diffusion and densification in magnitudes consistent with independent estimates. Beyond that, we find further modifications of the original isotope record to be unlikely or small in magnitude (<< 1 parts per thousand RMSD). These results show that the discrepancy between local temperatures and isotopes most likely originates from spatially coherent processes prior to or during deposition, such as precipitation intermittency or systematic isotope modifications acting on drifting or loose surface snow.}, language = {en} } @article{WetterichSchirrmeisteNazarovaetal.2018, author = {Wetterich, Sebastian and Schirrmeiste, Lutz and Nazarova, Larisa B. and Palagushkina, Olga and Bobrov, Anatoly and Pogosyan, Lilit and Savelieva, Larisa and Syrykh, Liudmila and Matthes, Heidrun and Fritz, Michael and G{\"u}nther, Frank and Opel, Thomas and Meyer, Hanno}, title = {Holocene thermokarst and pingo development in the Kolyma Lowland (NE Siberia)}, series = {Permafrost and Periglacial Processes}, volume = {29}, journal = {Permafrost and Periglacial Processes}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {1045-6740}, doi = {10.1002/ppp.1979}, pages = {182 -- 198}, year = {2018}, abstract = {Ground ice and sedimentary records of a pingo exposure reveal insights into Holocene permafrost, landscape and climate dynamics. Early to mid-Holocene thermokarst lake deposits contain rich floral and faunal paleoassemblages, which indicate lake shrinkage and decreasing summer temperatures (chironomid-based T-July) from 10.5 to 3.5 cal kyr BP with the warmest period between 10.5 and 8 cal kyr BP. Talik refreezing and pingo growth started about 3.5 cal kyr BP after disappearance of the lake. The isotopic composition of the pingo ice (delta O-18 - 17.1 +/- 0.6 parts per thousand, delta D -144.5 +/- 3.4 parts per thousand, slope 5.85, deuterium excess -7.7 +/- 1.5 parts per thousand) point to the initial stage of closed-system freezing captured in the record. A differing isotopic composition within the massive ice body was found (delta O-18 - 21.3 +/- 1.4 parts per thousand, delta D -165 +/- 11.5 parts per thousand, slope 8.13, deuterium excess 4.9 +/- 3.2 parts per thousand), probably related to the infill of dilation cracks by surface water with quasi-meteoric signature. Currently inactive syngenetic ice wedges formed in the thermokarst basin after lake drainage. The pingo preserves traces of permafrost response to climate variations in terms of ground-ice degradation (thermokarst) during the early and mid-Holocene, and aggradation (wedge-ice and pingo-ice growth) during the late Holocene.}, language = {en} } @article{BreitenbachAdkinsMeyeretal.2010, author = {Breitenbach, Sebastian Franz Martin and Adkins, Jess F. and Meyer, Hanno and Marwan, Norbert and Kumar, Kanikicharla Krishna and Haug, Gerald H.}, title = {Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India}, issn = {0012-821X}, doi = {10.1016/j.epsl.2010.01.038}, year = {2010}, abstract = {To calibrate delta O-18 time-series from speleothems in the eastern Indian summer monsoon (ISM) region of India, and to understand the moisture regime over the northern Bay of Bengal (BoB) we analyze the delta O-18 and delta D of rainwater, collected in 2007 and 2008 near Cherrapunji, India. delta D values range from + 18.5 parts per thousand to 144.4 parts per thousand, while delta O-18 varies between +0.8 parts per thousand and 18.8 parts per thousand. The Local Meteoric Water Line (LMWL) is found to be indistinguishable from the Global Meteoric Water Line (GMWL). Late ISM (September-October) rainfall exhibits lowest delta O-18 and delta D values, with little relationship to the local precipitation amount. There is a trend to lighter isotope values over the course of the ISM, but it does not correlate with the patterns of temperature and rainfall amount delta O-18 and delta D time-series have to be interpreted with caution in terms of the 'amount effect' in this subtropical region. We find that the temporal trend in delta O-18 reflects increasing transport distance during the ISM, isotopic changes in the northern BoB surface waters during late ISM, and vapor re-equilibration with rain droplets. Using an isotope box model for surface ocean waters, we quantify the potential influence of river runoff on the isotopic composition of the seasonal freshwater plume in the northern BoB. Temporal variations in this source can contribute up to 25\% of the observed changes in stable isotopes of precipitation in NE India. To delineate other moisture sources, we use backward trajectory computations and find a strong correlation between source region and isotopic composition. Palaeoclimatic stable isotope time-series from northeast Indian speleothems likely reflect changes in moisture source and transport pathway, as well as the isotopic composition of the BoB surface water, all of which in turn reflect ISM strength. Stalagmite records from the region can therefore be interpreted as integrated measures of the ISM strength.}, language = {en} } @article{HerzschuhMischkeMeyeretal.2010, author = {Herzschuh, Ulrike and Mischke, Steffen and Meyer, Hanno and Plessen, Birgit and Zhang, Chengjun}, title = {Lake nutrient variability inferred from elemental (C, N, S) and isotopic (delta C-13, delta N-15) analyses of aquatic plant macrofossils}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2010.05.011}, year = {2010}, abstract = {This paper aims to highlight the potential of using elemental and stable isotope analyses of aquatic macrophytes in palaeolimnological studies. Potamogeton pectinatus material was collected from modem plants (n=68) and from late glacial and Holocene-aged sediments from Koucha Lake (northeastern Tibetan Plateau; 34.0 degrees N; 97.2 degrees E; 4540 m a.s.l.). It was analyzed for delta C-13(Potamogeton) (modern: -23 to 0 parts per thousand, fossil: -19 to -4 parts per thousand) and delta N-15(Potamogeton) (modern: -11.0 to +13.8 parts per thousand, fossil: -9.5 to +6.7 parts per thousand) in addition to elemental carbon and nitrogen (modem C/N-Potamogeton: 7 to 29; fossil: 13 to 68) and sulfur (fossil: 188-899 mu mol/g dry weight). Fossil data were interpreted in terms of palaeo-nutrient availability and palaeo-productivity based on the modem relationships between various proxies and certain environmental data. Productivity of Potamogeton pectinatus mats at Koucha Lake as indicated by palaeo-epsilon(Potamogeton-TIC) (i.e. the enrichment of delta C-13(Potamogeton) relative to the delta(CTIC)-C-13) was reduced during periods of high conductivity, especially between 10.3 and 7.4 cal kyr BP. Potamogeton pectinatus material from these periods was also characterized by high S-Potamogeton indicating high sulfide concentrations and anoxic conditions within the sediments. However, C/N- Potamogeton ratios and delta N-15(Potamogeton) from the lower core section were found to have been altered by decompositional processes. A pronounced shift in the aquatic productivity of Lake Koucha occurred at similar to 7.4 cal kyr BP when the hydrological conditions shifted towards an open lake system and water depth increased. At this time a strong increase in productivity led to a strong decrease in the water HCO3- concentration as inferred from the application of a epsilon-(Potamogeton-TIC)-InHCO3- transfer function. A comparison of reconstructed productivity changes from Koucha Lake with further environmental proxies suggests that primary productivity changes are probably a function of internal lake dynamics and were only indirectly triggered by climate change.}, language = {en} } @article{HerzschuhMischkeMeyeretal.2010, author = {Herzschuh, Ulrike and Mischke, Steffen and Meyer, Hanno and Plessen, Birgit and Zhang, Chengjun}, title = {Using variations in the stable carbon isotope composition of macrophyte remains to quantify nutrient dynamics in lakes}, issn = {0921-2728}, doi = {10.1007/s10933-009-9365-0}, year = {2010}, abstract = {The apparent isotope enrichment factor epsilon(macrophyte) of submerged plants (epsilon(macrophyte-DIC) = delta C-13(macrophyte) - delta C-13(DIC)) is indicative of dissolved inorganic carbon (DIC) supply in neutral to alkaline waters and is related to variations in aquatic productivity (Papadimitriou et al. in Limnol Oceanogr 50:1084-1095, 2005). This paper aims to evaluate the usage of epsilon(macrophyte) inferred from isotopic analyses of submerged plant fossils in addition to analyses of lake carbonate as a palaeolimnological proxy for former HCO3 (-) concentrations. Stable carbon isotopic analysis of modern Potamogeton pectinatus leaves and its host water DIC from the Tibetan Plateau and Central Yakutia (Russia) yielded values between -23.3 and +0.4aEuro degrees and between +14.0 and +6.5aEuro degrees, respectively. Values of epsilon (Potamogeton-DIC) (range -15.4 to +1.1aEuro degrees) from these lakes are significantly correlated with host water HCO3 (-) concentration (range 78-2,200 mg/l) (r = -0.86; P < 0.001), thus allowing for the development of a transfer function. Palaeo-epsilon (Potamogeton-ostracods) values from Luanhaizi Lake on the NE Tibetan Plateau, as inferred from the stable carbon isotope measurement of fossil Potamogeton pectinatus seeds (range -24 to +2.8aEuro degrees) and ostracods (range -7.8 to +7.5\%) range between -14.8 and 1.6aEuro degrees. Phases of assumed disequilibrium between delta C-13(DIC) and delta C-13(ostracods) known to occur in charophyte swards (as indicated by the deposition of charophyte fossils) were excluded from the analysis of palaeo-epsilon. The application of the epsilon (Potamogeton-DIC)-HCO3 (-) transfer function yielded a median palaeo-HCO3 (-) -concentration of 290 mg/l. Variations in the dissolved organic carbon supply compare well with aquatic plant productivity changes and lake level variability as inferred from a multiproxy study of the same record including analyses of plant macrofossils, ostracods, carbonate and organic content.}, language = {en} } @article{WolffKristenJennySchettleretal.2014, author = {Wolff, Christian Michael and Kristen-Jenny, Iris and Schettler, Georg and Plessen, Birgit and Meyer, Hanno and Dulski, Peter and Naumann, Rudolf and Brauer, Achim and Verschuren, Dirk and Haug, Gerald H.}, title = {Modern seasonality in Lake Challa (Kenya/Tanzania) and its sedimentary documentation in recent lake sediments}, series = {Limnology and oceanography}, volume = {59}, journal = {Limnology and oceanography}, number = {5}, publisher = {Wiley}, address = {Waco}, issn = {0024-3590}, doi = {10.4319/lo.2014.59.5.1621}, pages = {1621 -- 1636}, year = {2014}, abstract = {From November 2006 to January 2010, a sediment trap that was cleared monthly was deployed in Lake Challa, a deep stratified freshwater lake on the eastern slope of Mt. Kilimanjaro in southern Kenya. Geochemical data from sediment trap samples were compared with a broad range of limnological and meteorological parameters to characterize the effect of single parameters on productivity and sedimentation processes in the crater basin. During the southern hemisphere summer (November-March), when the water temperature is high and the lake is biologically productive (nondiatom algae), calcite predominated in the sediment trap samples. During the "long rain" season (March-May) a small amount of organic matter and lithogenic material caused by rainfall appeared. This was followed by the cool and windy months of the southern hemisphere winter (June-October) when diatoms were the main component, indicating a diatom bloom initiated by improvement of nutrient availability related to upwelling processes. The sediment trap data support the hypothesis that the light-dark lamination couplets, which are abundant in Lake Challa cores, reflect seasonal delivery to the sediments of diatom-rich particulates during the windy months and diatom-poor material during the wet season. However, interannual and spatial variability in upwelling and productivity patterns, as well as El Nino-Southern Oscillation (ENSO)-related rainfall and drought cycles, exert a strong influence on the magnitude and geochemical composition of particle export to the hypolimnion of Lake Challa.}, language = {en} } @article{ParisiPaternosterKohfahletal.2011, author = {Parisi, Serena and Paternoster, Michele and Kohfahl, Claus and Pekdeger, Asaf and Meyer, Hanno and Hubberten, Hans-Wolfgang and Spilotro, Giuseppe and Mongelli, Giovanni}, title = {Groundwater recharge areas of a volcanic aquifer system inferred from hydraulic, hydrogeochemical and stable isotope data mount Vulture, southern Italy}, series = {Hydrogeology journal : official journal of the International Association of Hydrogeologists}, volume = {19}, journal = {Hydrogeology journal : official journal of the International Association of Hydrogeologists}, number = {1}, publisher = {Springer}, address = {New York}, issn = {1431-2174}, doi = {10.1007/s10040-010-0619-8}, pages = {133 -- 153}, year = {2011}, abstract = {Environmental isotope techniques, hydrogeochemical analysis and hydraulic data are employed to identify the main recharge areas of the Mt. Vulture hydrogeological basin, one of the most important aquifers of southern Italy. The groundwaters are derived from seepage of rainwater, flowing from the highest to the lowest elevations through the shallow volcanic weathered host-rock fracture zones. Samples of shallow and deep groundwater were collected at 48 locations with elevations ranging from 352 to 1,100 m above sea level (a.s.l.), for stable isotope (delta(18)O, delta D) and major ion analyses. A complete dataset of available hydraulic information has been integrated with measurements carried out in the present study. Inferred recharge elevations, estimated on the basis of the local vertical isotopic gradient of delta(18)O, range between 550 and 1,200 m a.s.l. The isotope pattern of the Quaternary aquifer reflects the spatial separation of different recharge sources. Knowledge of the local hydrogeological setting was the starting point for a detailed hydrogeochemical and isotopic study to define the recharge and discharge patterns identifying the groundwater flow pathways of the Mt. Vulture basin. The integration of all the data allowed for the tracing of the groundwater flows of the Mt. Vulture basin.}, language = {en} } @article{HoffBiskabornDirksenetal.2015, author = {Hoff, Ulrike and Biskaborn, Boris K. and Dirksen, Veronika G. and Dirksen, Oleg and Kuhn, Gerhard and Meyer, Hanno and Nazarova, Larisa B. and Roth, Alexandra and Diekmann, Bernhard}, title = {Holocene environment of Central Kamchatka, Russia: Implications from a multi-proxy record of Two-Yurts Lake}, series = {Global and planetary change}, volume = {134}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2015.07.011}, pages = {101 -- 117}, year = {2015}, abstract = {Within the scope of Russian German palaeoenvironmental research, Two-Yurts Lake (TYL, Dvuh-Yurtochnoe in Russian) was chosen as the main scientific target area to decipher Holocene climate variability on Kamchatka. The 5 x 2 km large and 26 m deep lake is of proglacial origin and situated on the eastern flank of Sredinny Ridge at the northwestern end of the Central Kamchatka Valley, outside the direct influence of active volcanism. Here, we present results of a multi-proxy study on sediment cores, spanning about the last 7000 years. The general tenor of the TYL record is an increase in continentality and winter snow cover in conjunction with a decrease in temperature, humidity, and biological productivity after 5000-4500 cal yrs BP, inferred from pollen and diatom data and the isotopic composition of organic carbon. The TYL proxy data also show that the late Holocene was punctuated by two colder spells, roughly between 4500 and 3500 cal yrs BP and between 1000 and 200 cal yrs BP, as local expressions of the Neoglacial and Little Ice Age, respectively. These environmental changes can be regarded as direct and indirect responses to climate change, as also demonstrated by other records in the regional terrestrial and marine realm. Long-term climate deterioration was driven by decreasing insolation, while the short-term climate excursions are best explained by local climatic processes. The latter affect the configuration of atmospheric pressure systems that control the sources as well as the temperature and moisture of air masses reaching Kamchatka. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @misc{MuenchKipfstuhlFreitagetal.2016, author = {M{\"u}nch, Thomas and Kipfstuhl, Sepp and Freitag, Johannes and Meyer, Hanno and Laepple, Thomas}, title = {Regional climate signal vs. local noise}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {500}, issn = {1866-8372}, doi = {10.25932/publishup-40838}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408385}, pages = {17}, year = {2016}, abstract = {In low-accumulation regions, the reliability of delta O-18-derived temperature signals from ice cores within the Holocene is unclear, primarily due to the small climate changes relative to the intrinsic noise of the isotopic signal. In order to learn about the representativity of single ice cores and to optimise future ice-core-based climate reconstructions, we studied the stable-water isotope composition of firn at Kohnen Station, Dronning Maud Land, Antarctica. Analysing delta O-18 in two 50m long snow trenches allowed us to create an unprecedented, two-dimensional image characterising the isotopic variations from the centimetre to the 100-metre scale. Our results show seasonal layering of the isotopic composition but also high horizontal isotopic variability caused by local stratigraphic noise. Based on the horizontal and vertical structure of the isotopic variations, we derive a statistical noise model which successfully explains the trench data. The model further allows one to determine an upper bound for the reliability of climate reconstructions conducted in our study region at seasonal to annual resolution, depending on the number and the spacing of the cores taken.}, language = {en} } @article{MuenchKipfstuhlFreitagetal.2016, author = {M{\"u}nch, Thomas and Kipfstuhl, Sepp and Freitag, Johannes and Meyer, Hanno and Laepple, Thomas}, title = {Regional climate signal vs. local noise: a two-dimensional view of water isotopes in Antarctic firn at Kohnen Station, Dronning Maud Land}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {12}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-12-1565-2016}, pages = {1565 -- 1581}, year = {2016}, abstract = {In low-accumulation regions, the reliability of delta O-18-derived temperature signals from ice cores within the Holocene is unclear, primarily due to the small climate changes relative to the intrinsic noise of the isotopic signal. In order to learn about the representativity of single ice cores and to optimise future ice-core-based climate reconstructions, we studied the stable-water isotope composition of firn at Kohnen Station, Dronning Maud Land, Antarctica. Analysing delta O-18 in two 50m long snow trenches allowed us to create an unprecedented, two-dimensional image characterising the isotopic variations from the centimetre to the 100-metre scale. Our results show seasonal layering of the isotopic composition but also high horizontal isotopic variability caused by local stratigraphic noise. Based on the horizontal and vertical structure of the isotopic variations, we derive a statistical noise model which successfully explains the trench data. The model further allows one to determine an upper bound for the reliability of climate reconstructions conducted in our study region at seasonal to annual resolution, depending on the number and the spacing of the cores taken.}, language = {en} }