@article{AgarwalCaesarMarwanetal.2019, author = {Agarwal, Ankit and Caesar, Levke and Marwan, Norbert and Maheswaran, Rathinasamy and Merz, Bruno}, title = {Network-based identification and characterization of teleconnections on different scales}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-45423-5}, pages = {12}, year = {2019}, abstract = {Sea surface temperature (SST) patterns can - as surface climate forcing - affect weather and climate at large distances. One example is El Ni{\~n}o-Southern Oscillation (ENSO) that causes climate anomalies around the globe via teleconnections. Although several studies identified and characterized these teleconnections, our understanding of climate processes remains incomplete, since interactions and feedbacks are typically exhibited at unique or multiple temporal and spatial scales. This study characterizes the interactions between the cells of a global SST data set at different temporal and spatial scales using climate networks. These networks are constructed using wavelet multi-scale correlation that investigate the correlation between the SST time series at a range of scales allowing instantaneously deeper insights into the correlation patterns compared to traditional methods like empirical orthogonal functions or classical correlation analysis. This allows us to identify and visualise regions of - at a certain timescale - similarly evolving SSTs and distinguish them from those with long-range teleconnections to other ocean regions. Our findings re-confirm accepted knowledge about known highly linked SST patterns like ENSO and the Pacific Decadal Oscillation, but also suggest new insights into the characteristics and origins of long-range teleconnections like the connection between ENSO and Indian Ocean Dipole.}, language = {en} } @article{SiegSchinkoVogeletal.2019, author = {Sieg, Tobias and Schinko, Thomas and Vogel, Kristin and Mechler, Reinhard and Merz, Bruno and Kreibich, Heidi}, title = {Integrated assessment of short-term direct and indirect economic flood impacts including uncertainty quantification}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {4}, publisher = {Public Library of Science}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0212932}, pages = {21}, year = {2019}, abstract = {Understanding and quantifying total economic impacts of flood events is essential for flood risk management and adaptation planning. Yet, detailed estimations of joint direct and indirect flood-induced economic impacts are rare. In this study an innovative modeling procedure for the joint assessment of short-term direct and indirect economic flood impacts is introduced. The procedure is applied to 19 economic sectors in eight federal states of Germany after the flood events in 2013. The assessment of the direct economic impacts is object-based and considers uncertainties associated with the hazard, the exposed objects and their vulnerability. The direct economic impacts are then coupled to a supply-side Input-Output-Model to estimate the indirect economic impacts. The procedure provides distributions of direct and indirect economic impacts which capture the associated uncertainties. The distributions of the direct economic impacts in the federal states are plausible when compared to reported values. The ratio between indirect and direct economic impacts shows that the sectors Manufacturing, Financial and Insurance activities suffered the most from indirect economic impacts. These ratios also indicate that indirect economic impacts can be almost as high as direct economic impacts. They differ strongly between the economic sectors indicating that the application of a single factor as a proxy for the indirect impacts of all economic sectors is not appropriate.}, language = {en} } @article{SiegVogelMerzetal.2019, author = {Sieg, Tobias and Vogel, Kristin and Merz, Bruno and Kreibich, Heidi}, title = {Seamless Estimation of Hydrometeorological Risk Across Spatial Scales}, series = {Earth's Future}, volume = {7}, journal = {Earth's Future}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken, NJ}, issn = {2328-4277}, doi = {10.1029/2018EF001122}, pages = {574 -- 581}, year = {2019}, abstract = {Hydrometeorological hazards caused losses of approximately 110 billion U.S. Dollars in 2016 worldwide. Current damage estimations do not consider the uncertainties in a comprehensive way, and they are not consistent between spatial scales. Aggregated land use data are used at larger spatial scales, although detailed exposure data at the object level, such as openstreetmap.org, is becoming increasingly available across the globe.We present a probabilistic approach for object-based damage estimation which represents uncertainties and is fully scalable in space. The approach is applied and validated to company damage from the flood of 2013 in Germany. Damage estimates are more accurate compared to damage models using land use data, and the estimation works reliably at all spatial scales. Therefore, it can as well be used for pre-event analysis and risk assessments. This method takes hydrometeorological damage estimation and risk assessments to the next level, making damage estimates and their uncertainties fully scalable in space, from object to country level, and enabling the exploitation of new exposure data.}, language = {en} } @misc{AgarwalMarwanMaheswaranetal.2017, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and Merz, Bruno and Kurths, J{\"u}rgen}, title = {Multi-scale event synchronization analysis for unravelling climate processes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {661}, issn = {1866-8372}, doi = {10.25932/publishup-41827}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418274}, pages = {13}, year = {2017}, abstract = {The temporal dynamics of climate processes are spread across different timescales and, as such, the study of these processes at only one selected timescale might not reveal the complete mechanisms and interactions within and between the (sub-) processes. To capture the non-linear interactions between climatic events, the method of event synchronization has found increasing attention recently. The main drawback with the present estimation of event synchronization is its restriction to analysing the time series at one reference timescale only. The study of event synchronization at multiple scales would be of great interest to comprehend the dynamics of the investigated climate processes. In this paper, the wavelet-based multi-scale event synchronization (MSES) method is proposed by combining the wavelet transform and event synchronization. Wavelets are used extensively to comprehend multi-scale processes and the dynamics of processes across various timescales. The proposed method allows the study of spatio-temporal patterns across different timescales. The method is tested on synthetic and real-world time series in order to check its replicability and applicability. The results indicate that MSES is able to capture relationships that exist between processes at different timescales.}, language = {en} } @article{GanguliPaprotnyHasanetal.2020, author = {Ganguli, Poulomi and Paprotny, Dominik and Hasan, Mehedi and G{\"u}ntner, Andreas and Merz, Bruno}, title = {Projected changes in compound flood hazard from riverine and coastal floods in northwestern Europe}, series = {Earth's future}, volume = {8}, journal = {Earth's future}, number = {11}, publisher = {Wiley-Blackwell}, address = {Hoboken, NJ}, issn = {2328-4277}, doi = {10.1029/2020EF001752}, pages = {19}, year = {2020}, abstract = {Compound flooding in coastal regions, that is, the simultaneous or successive occurrence of high sea levels and high river flows, is expected to increase in a warmer world. To date, however, there is no robust evidence on projected changes in compound flooding for northwestern Europe. We combine projected storm surges and river floods with probabilistic, localized relative sea-level rise (SLR) scenarios to assess the future compound flood hazard over northwestern coastal Europe in the high (RCP8.5) emission scenario. We use high-resolution, dynamically downscaled regional climate models (RCM) to drive a storm surge model and a hydrological model, and analyze the joint occurrence of high coastal water levels and associated river peaks in a multivariate copula-based approach. The RCM-forced multimodel mean reasonably represents the observed spatial pattern of the dependence strength between annual maxima surge and peak river discharge, although substantial discrepancies exist between observed and simulated dependence strength. All models overestimate the dependence strength, possibly due to limitations in model parameterizations. This bias affects compound flood hazard estimates and requires further investigation. While our results suggest decreasing compound flood hazard over the majority of sites by 2050s (2040-2069) compared to the reference period (1985-2005), an increase in projected compound flood hazard is limited to around 34\% of the sites. Further, we show the substantial role of SLR, a driver of compound floods, which has frequently been neglected. Our findings highlight the need to be aware of the limitations of the current generation of Earth system models in simulating coastal compound floods.}, language = {en} } @book{BronstertThiekenMerzetal.2004, author = {Bronstert, Axel and Thieken, Annegret and Merz, Bruno and Rode, Michael and Menzel, Lucas}, title = {Wasser- und Stofftransport in heterogenen Einzugsgebieten : Beitr{\"a}ge zum Tag der Hydrologie 2004, 22./ 23. M{\"a}rz 2004 in Potsdam ; Bd. 1 Vortr{\"a}ge}, volume = {5}, publisher = {ATV-DVWK}, address = {Hennef (Sieg)}, isbn = {3-937758-18-6}, pages = {315 S.}, year = {2004}, language = {de} } @article{SwierczynskiLauterbachDulskietal.2013, author = {Swierczynski, Tina and Lauterbach, Stefan and Dulski, Peter and Delgado, Jose Miguel Martins and Merz, Bruno and Brauer, Achim}, title = {Mid- to late holocene flood frequency changes in the northeastern Alps as recorded in varved sediments of Lake Mondsee (Upper Austria)}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {80}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2013.08.018}, pages = {78 -- 90}, year = {2013}, abstract = {Annually laminated (varved) lake sediments with intercalated detrital layers resulting from sedimentary input by runoff events are ideal archives to establish precisely dated records of past extreme runoff events. In this study, the mid- to late Holocene varved sediments of Lake Mondsee (Upper Austria) were analysed by combining sedimentological, geophysical and geochemical methods. This approach allows to distinguish two types of detrital layers related to different types of extreme runoff events (floods and debris flows) and to detect changes in flood activity during the last 7100 years. In total, 271 flood and 47 debris flow layers, deposited during spring and summer, were identified, which cluster in 18 main flood episodes (FE 1-18) with durations of 30-50 years each. These main flood periods occurred during the Neolithic (7100-7050 vyr BP and 6470-4450 vyr BP), the late Bronze Age and the early Iron Age (3300-3250 and 2800-2750 vyr BP), the late Iron Age (2050-2000 vyr BP), throughout the Dark Ages Cold Period (1500-1200 vyr BP), and at the end of the Medieval Warm Period and the Little Ice Age (810-430 vyr BP). Summer flood episodes in Lake Mondsee are generally more abundant during the last 1500 years, often coinciding with major advances of Alpine glaciers. Prior to 1500 vyr BP, spring/summer floods and debris flows are generally less frequent, indicating a lower number of intense rainfall events that triggered erosion. In comparison with the increase of late Holocene flood activity in western and northwestern (NW) Europe, commencing already as early as 2800 yr BP, the hydro-meteorological shift in the Lake Mondsee region occurred much later. These time lags in the onset of increased hydrological activity might be either due to regional differences in atmospheric circulation pattern or to the sensitivity of the individual flood archives. The Lake Mondsee sediments represent the first precisely dated and several millennia long summer flood record for the northeastern (NE) Alps, a key region at the climatic boundary of Atlantic, Mediterranean and East European air masses, aiding a better understanding of regional and seasonal peculiarities of flood occurrence under changing climate conditions. (C) 2013 Elsevier Ltd. All rights reserved.}, language = {en} } @article{UhlemannBertelmannMerz2013, author = {Uhlemann, S. and Bertelmann, Roland and Merz, Bruno}, title = {Data expansion the potential of grey literature for understanding floods}, series = {Hydrology and earth system sciences : HESS}, volume = {17}, journal = {Hydrology and earth system sciences : HESS}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-17-895-2013}, pages = {895 -- 911}, year = {2013}, abstract = {Sophisticated methods have been developed and become standard in analysing floods as well as for assessing flood risk. However, increasingly critique of the current standards and scientific practice can be found both in the flood hydrology community as well as in the risk community who argue that the considerable amount of information already available on natural disasters has not been adequately deployed and brought to effective use. We describe this phenomenon as a failure to synthesize knowledge that results from barriers and ignorance in awareness, use and management of the entire spectrum of relevant content, that is, data, information and knowledge. In this paper we argue that the scientific community in flood risk research ignores event-specific analysis and documentations as another source of data. We present results from a systematic search that includes an intensive study on sources and ways of information dissemination of flood-relevant publications. We obtain 186 documents that contain information on the sources, pathways, receptors and/or consequences for any of the 40 strongest trans-basin floods in Germany in the period 1952-2002. This study therefore provides the most comprehensive metadata collection of flood documentations for the considered geographical space and period. A total of 87.5\% of all events have been documented, and especially the most severe floods have received extensive coverage. Only 30\% of the material has been produced in the scientific/academic environment, and the majority of all documents (about 80\%) can be considered grey literature (i.e. literature not controlled by commercial publishers). Therefore, ignoring grey sources in flood research also means ignoring the largest part of knowledge available on single flood events (in Germany). Further, the results of this study underpin the rapid changes in information dissemination of flood event literature over the last decade. We discuss the options and obstacles of incorporating this data into the knowledge-building process in light of the current technological developments and international, interdisciplinary debates for data curation.}, language = {en} } @article{AgarwalMarwanMaheswaranetal.2020, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and {\"O}zt{\"u}rk, Ugur and Kurths, J{\"u}rgen and Merz, Bruno}, title = {Optimal design of hydrometric station networks based on complex network analysis}, series = {Hydrology and Earth System Sciences}, volume = {24}, journal = {Hydrology and Earth System Sciences}, number = {5}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-24-2235-2020}, pages = {2235 -- 2251}, year = {2020}, abstract = {Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure - the weighted degree-betweenness (WDB) measure - to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail.}, language = {en} } @book{Merz2007, author = {Merz, Bruno}, title = {Der Umgang mit Naturgewalten in Deutschland : vom Reagieren zum Risikomanagement : Antrittsvorlesung 2007-07-05}, publisher = {Univ.-Bibl.}, address = {Potsdam}, year = {2007}, abstract = {Ob sich extreme Naturereignisse zu Katastrophen ausweiten, h{\"a}ngt von der Vorsorge der Gesellschaft und ihrer Reaktion in Krisensituationen ab. Grundlage f{\"u}r einen wirksamen Umgang mit Naturgefahren ist der Kreislauf des Risikomanagements. Erst auf der Analyse m{\"o}glicher Extremereignisse, ihrer Eintrittswahrscheinlichkeiten sowie der Konsequenzen f{\"u}r die Gesellschaft lassen sich optimale Schutzstrategien ableiten. Vor dem Hintergrund sich st{\"a}ndig wandelnder Randbedingungen, beispielsweise durch den Klimawandel, ist der Umgang mit Ungewissheit eine der gr{\"o}ßten Herausforderungen.}, language = {de} }