@misc{SiegVogelMerzetal.2019, author = {Sieg, Tobias and Vogel, Kristin and Merz, Bruno and Kreibich, Heidi}, title = {Seamless Estimation of Hydrometeorological Risk Across Spatial Scales}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {743}, issn = {1866-8372}, doi = {10.25932/publishup-43534}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435341}, pages = {574 -- 581}, year = {2019}, abstract = {Hydrometeorological hazards caused losses of approximately 110 billion U.S. Dollars in 2016 worldwide. Current damage estimations do not consider the uncertainties in a comprehensive way, and they are not consistent between spatial scales. Aggregated land use data are used at larger spatial scales, although detailed exposure data at the object level, such as openstreetmap.org, is becoming increasingly available across the globe.We present a probabilistic approach for object-based damage estimation which represents uncertainties and is fully scalable in space. The approach is applied and validated to company damage from the flood of 2013 in Germany. Damage estimates are more accurate compared to damage models using land use data, and the estimation works reliably at all spatial scales. Therefore, it can as well be used for pre-event analysis and risk assessments. This method takes hydrometeorological damage estimation and risk assessments to the next level, making damage estimates and their uncertainties fully scalable in space, from object to country level, and enabling the exploitation of new exposure data.}, language = {en} } @article{SairamSchroeterRoezeretal.2019, author = {Sairam, Nivedita and Schroeter, Kai and R{\"o}zer, Viktor and Merz, Bruno and Kreibich, Heidi}, title = {Hierarchical Bayesian Approach for Modeling Spatiotemporal Variability in Flood Damage Processes}, series = {Water resources research}, volume = {55}, journal = {Water resources research}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2019WR025068}, pages = {8223 -- 8237}, year = {2019}, abstract = {Flood damage processes are complex and vary between events and regions. State-of-the-art flood loss models are often developed on the basis of empirical damage data from specific case studies and do not perform well when spatially and temporally transferred. This is due to the fact that such localized models often cover only a small set of possible damage processes from one event and a region. On the other hand, a single generalized model covering multiple events and different regions ignores the variability in damage processes across regions and events due to variables that are not explicitly accounted for individual households. We implement a hierarchical Bayesian approach to parameterize widely used depth-damage functions resulting in a hierarchical (multilevel) Bayesian model (HBM) for flood loss estimation that accounts for spatiotemporal heterogeneity in damage processes. We test and prove the hypothesis that, in transfer scenarios, HBMs are superior compared to generalized and localized regression models. In order to improve loss predictions for regions and events for which no empirical damage data are available, we use variables pertaining to specific region- and event-characteristics representing commonly available expert knowledge as group-level predictors within the HBM.}, language = {en} } @article{SiegSchinkoVogeletal.2019, author = {Sieg, Tobias and Schinko, Thomas and Vogel, Kristin and Mechler, Reinhard and Merz, Bruno and Kreibich, Heidi}, title = {Integrated assessment of short-term direct and indirect economic flood impacts including uncertainty quantification}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {4}, publisher = {Public Library of Science}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0212932}, pages = {21}, year = {2019}, abstract = {Understanding and quantifying total economic impacts of flood events is essential for flood risk management and adaptation planning. Yet, detailed estimations of joint direct and indirect flood-induced economic impacts are rare. In this study an innovative modeling procedure for the joint assessment of short-term direct and indirect economic flood impacts is introduced. The procedure is applied to 19 economic sectors in eight federal states of Germany after the flood events in 2013. The assessment of the direct economic impacts is object-based and considers uncertainties associated with the hazard, the exposed objects and their vulnerability. The direct economic impacts are then coupled to a supply-side Input-Output-Model to estimate the indirect economic impacts. The procedure provides distributions of direct and indirect economic impacts which capture the associated uncertainties. The distributions of the direct economic impacts in the federal states are plausible when compared to reported values. The ratio between indirect and direct economic impacts shows that the sectors Manufacturing, Financial and Insurance activities suffered the most from indirect economic impacts. These ratios also indicate that indirect economic impacts can be almost as high as direct economic impacts. They differ strongly between the economic sectors indicating that the application of a single factor as a proxy for the indirect impacts of all economic sectors is not appropriate.}, language = {en} } @article{SiegVogelMerzetal.2019, author = {Sieg, Tobias and Vogel, Kristin and Merz, Bruno and Kreibich, Heidi}, title = {Seamless Estimation of Hydrometeorological Risk Across Spatial Scales}, series = {Earth's Future}, volume = {7}, journal = {Earth's Future}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken, NJ}, issn = {2328-4277}, doi = {10.1029/2018EF001122}, pages = {574 -- 581}, year = {2019}, abstract = {Hydrometeorological hazards caused losses of approximately 110 billion U.S. Dollars in 2016 worldwide. Current damage estimations do not consider the uncertainties in a comprehensive way, and they are not consistent between spatial scales. Aggregated land use data are used at larger spatial scales, although detailed exposure data at the object level, such as openstreetmap.org, is becoming increasingly available across the globe.We present a probabilistic approach for object-based damage estimation which represents uncertainties and is fully scalable in space. The approach is applied and validated to company damage from the flood of 2013 in Germany. Damage estimates are more accurate compared to damage models using land use data, and the estimation works reliably at all spatial scales. Therefore, it can as well be used for pre-event analysis and risk assessments. This method takes hydrometeorological damage estimation and risk assessments to the next level, making damage estimates and their uncertainties fully scalable in space, from object to country level, and enabling the exploitation of new exposure data.}, language = {en} }