@phdthesis{Melani2019, author = {Melani, Giacomo}, title = {From structural fluctuations to vibrational spectroscopy of adsorbates on surfaces}, doi = {10.25932/publishup-44182}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441826}, school = {Universit{\"a}t Potsdam}, pages = {119}, year = {2019}, abstract = {Aluminum oxide is an Earth-abundant geological material, and its interaction with water is of crucial importance for geochemical and environmental processes. Some aluminum oxide surfaces are also known to be useful in heterogeneous catalysis, while the surface chemistry of aqueous oxide interfaces determines the corrosion, growth and dissolution of such materials. In this doctoral work, we looked mainly at the (0001) surface of α-Al 2 O 3 and its reactivity towards water. In particular, a great focus of this work is dedicated to simulate and address the vibrational spectra of water adsorbed on the α-alumina(0001) surface in various conditions and at different coverages. In fact, the main source of comparison and inspiration for this work comes from the collaboration with the "Interfacial Molecular Spectroscopy" group led by Dr. R. Kramer Campen at the Fritz-Haber Institute of the MPG in Berlin. The expertise of our project partners in surface-sensitive Vibrational Sum Frequency (VSF) generation spectroscopy was crucial to develop and adapt specific simulation schemes used in this work. Methodologically, the main approach employed in this thesis is Ab Initio Molecular Dynamics (AIMD) based on periodic Density Functional Theory (DFT) using the PBE functional with D2 dispersion correction. The analysis of vibrational frequencies from both a static and a dynamic, finite-temperature perspective offers the ability to investigate the water / aluminum oxide interface in close connection to experiment. The first project presented in this work considers the characterization of dissociatively adsorbed deuterated water on the Al-terminated (0001) surface. This particular structure is known from both experiment and theory to be the thermodynamically most stable surface termination of α-alumina in Ultra-High Vacuum (UHV) conditions. Based on experiments performed by our colleagues at FHI, different adsorption sites and products have been proposed and identified for D 2 O. While previous theoretical investigations only looked at vibrational frequencies of dissociated OD groups by staticNormal Modes Analysis (NMA), we rather employed a more sophisticated approach to directly assess vibrational spectra (like IR and VSF) at finite temperature from AIMD. In this work, we have employed a recent implementation which makes use of velocity-velocity autocorrelation functions to simulate such spectral responses of O-H(D) bonds. This approach allows for an efficient and qualitatively accurate estimation of Vibrational Densities of States (VDOS) as well as IR and VSF spectra, which are then tested against experimental spectra from our collaborators. In order to extend previous work on unimolecularly dissociated water on α-Al 2 O 3 , we then considered a different system, namely, a fully hydroxylated (0001) surface, which results from the reconstruction of the UHV-stable Al-terminated surface at high water contents. This model is then further extended by considering a hydroxylated surface with additional water molecules, forming a two-dimensional layer which serves as a potential template to simulate an aqueous interface in environmental conditions. Again, employing finite-temperature AIMD trajectories at the PBE+D2 level, we investigated the behaviour of both hydroxylated surface (HS) and the water-covered structure derived from it (known as HS+2ML). A full range of spectra, from VDOS to IR and VSF, is then calculated using the same methodology, as described above. This is the main focus of the second project, reported in Chapter 5. In this case, comparison between theoretical spectra and experimental data is definitely good. In particular, we underline the nature of high-frequency resonances observed above 3700 cm -1 in VSF experiments to be associated with surface OH-groups, known as "aluminols" which are a key fingerprint of the fully hydroxylated surface. In the third and last project, which is presented in Chapter 6, the extension of VSF spectroscopy experiments to the time-resolved regime offered us the opportunity to investigate vibrational energy relaxation at the α-alumina / water interface. Specifically, using again DFT-based AIMD simulations, we simulated vibrational lifetimes for surface aluminols as experimentally detected via pump-probe VSF. We considered the water-covered HS model as a potential candidate to address this problem. The vibrational (IR) excitation and subsequent relaxation is performed by means of a non-equilibrium molecular dynamics scheme. In such a scheme, we specifically looked at the O-H stretching mode of surface aluminols. Afterwards, the analysis of non-equilibrium trajectories allows for an estimation of relaxation times in the order of 2-4 ps which are in overall agreement with measured ones. The aim of this work has been to provide, within a consistent theoretical framework, a better understanding of vibrational spectroscopy and dynamics for water on the α-alumina(0001) surface,ranging from very low water coverage (similar to the UHV case) up to medium-high coverages, resembling the hydroxylated oxide in environmental moist conditions.}, language = {en} }