@article{AgarwalMaheswaranMarwanetal.2018, author = {Agarwal, Ankit and Maheswaran, Rathinasamy and Marwan, Norbert and Caesar, Levke and Kurths, J{\"u}rgen}, title = {Wavelet-based multiscale similarity measure for complex networks}, series = {The European physical journal : B, Condensed matter and complex systems}, volume = {91}, journal = {The European physical journal : B, Condensed matter and complex systems}, number = {11}, publisher = {Springer}, address = {New York}, issn = {1434-6028}, doi = {10.1140/epjb/e2018-90460-6}, pages = {12}, year = {2018}, abstract = {In recent years, complex network analysis facilitated the identification of universal and unexpected patterns in complex climate systems. However, the analysis and representation of a multiscale complex relationship that exists in the global climate system are limited. A logical first step in addressing this issue is to construct multiple networks over different timescales. Therefore, we propose to apply the wavelet multiscale correlation (WMC) similarity measure, which is a combination of two state-of-the-art methods, viz. wavelet and Pearson's correlation, for investigating multiscale processes through complex networks. Firstly we decompose the data over different timescales using the wavelet approach and subsequently construct a corresponding network by Pearson's correlation. The proposed approach is illustrated and tested on two synthetics and one real-world example. The first synthetic case study shows the efficacy of the proposed approach to unravel scale-specific connections, which are often undiscovered at a single scale. The second synthetic case study illustrates that by dividing and constructing a separate network for each time window we can detect significant changes in the signal structure. The real-world example investigates the behavior of the global sea surface temperature (SST) network at different timescales. Intriguingly, we notice that spatial dependent structure in SST evolves temporally. Overall, the proposed measure has an immense potential to provide essential insights on understanding and extending complex multivariate process studies at multiple scales.}, language = {en} } @article{MaheswaranAgarwalSivakumaretal.2019, author = {Maheswaran, Rathinasamy and Agarwal, Ankit and Sivakumar, Bellie and Marwan, Norbert and Kurths, J{\"u}rgen}, title = {Wavelet analysis of precipitation extremes over India and teleconnections to climate indices}, series = {Stochastic Environmental Research and Risk Assessment}, volume = {33}, journal = {Stochastic Environmental Research and Risk Assessment}, number = {11-12}, publisher = {Springer}, address = {New York}, issn = {1436-3240}, doi = {10.1007/s00477-019-01738-3}, pages = {2053 -- 2069}, year = {2019}, abstract = {Precipitation patterns and extremes are significantly influenced by various climatic factors and large-scale atmospheric circulation patterns. This study uses wavelet coherence analysis to detect significant interannual and interdecadal oscillations in monthly precipitation extremes across India and their teleconnections to three prominent climate indices, namely, Nino 3.4, Pacific Decadal Oscillation, and Indian Ocean Dipole (IOD). Further, partial wavelet coherence analysis is used to estimate the standalone relationship between the climate indices and precipitation after removing the effect of interdependency. The wavelet analysis of monthly precipitation extremes at 30 different locations across India reveals that (a) interannual (2-8 years) and interdecadal (8-32 years) oscillations are statistically significant, and (b) the oscillations vary in both time and space. The results from the partial wavelet coherence analysis reveal that Nino 3.4 and IOD are the significant drivers of Indian precipitation at interannual and interdecadal scales. Intriguingly, the study also confirms that the strength of influence of large-scale atmospheric circulation patterns on Indian precipitation extremes varies with spatial physiography of the region.}, language = {en} } @article{KurthsAgarwalShuklaetal.2019, author = {Kurths, J{\"u}rgen and Agarwal, Ankit and Shukla, Roopam and Marwan, Norbert and Maheswaran, Rathinasamy and Caesar, Levke and Krishnan, Raghavan and Merz, Bruno}, title = {Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach}, series = {Nonlinear processes in geophysics}, volume = {26}, journal = {Nonlinear processes in geophysics}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1023-5809}, doi = {10.5194/npg-26-251-2019}, pages = {251 -- 266}, year = {2019}, abstract = {A better understanding of precipitation dynamics in the Indian subcontinent is required since India's society depends heavily on reliable monsoon forecasts. We introduce a non-linear, multiscale approach, based on wavelets and event synchronization, for unravelling teleconnection influences on precipitation. We consider those climate patterns with the highest relevance for Indian precipitation. Our results suggest significant influences which are not well captured by only the wavelet coherence analysis, the state-of-the-art method in understanding linkages at multiple timescales. We find substantial variation across India and across timescales. In particular, El Ni{\~n}o-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) mainly influence precipitation in the south-east at interannual and decadal scales, respectively, whereas the North Atlantic Oscillation (NAO) has a strong connection to precipitation, particularly in the northern regions. The effect of the Pacific Decadal Oscillation (PDO) stretches across the whole country, whereas the Atlantic Multidecadal Oscillation (AMO) influences precipitation particularly in the central arid and semi-arid regions. The proposed method provides a powerful approach for capturing the dynamics of precipitation and, hence, helps improve precipitation forecasting.}, language = {en} } @article{LechleitnerBreitenbachRehfeldetal.2017, author = {Lechleitner, Franziska A. and Breitenbach, Sebastian Franz Martin and Rehfeld, Kira and Ridley, Harriet E. and Asmerom, Yemane and Prufer, Keith M. and Marwan, Norbert and Goswami, Bedartha and Kennett, Douglas J. and Aquino, Valorie V. and Polyak, Victor and Haug, Gerald H. and Eglinton, Timothy I. and Baldini, James U. L.}, title = {Tropical rainfall over the last two millennia: evidence for a low-latitude hydrologic seesaw}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep45809}, pages = {9}, year = {2017}, abstract = {The presence of a low-to mid-latitude interhemispheric hydrologic seesaw is apparent over orbital and glacial-interglacial timescales, but its existence over the most recent past remains unclear. Here we investigate, based on climate proxy reconstructions from both hemispheres, the inter-hemispherical phasing of the Intertropical Convergence Zone (ITCZ) and the low-to mid-latitude teleconnections in the Northern Hemisphere over the past 2000 years. A clear feature is a persistent southward shift of the ITCZ during the Little Ice Age until the beginning of the 19th Century. Strong covariation between our new composite ITCZ-stack and North Atlantic Oscillation (NAO) records reveals a tight coupling between these two synoptic weather and climate phenomena over decadal-to-centennial timescales. This relationship becomes most apparent when comparing two precisely dated, high-resolution paleorainfall records from Belize and Scotland, indicating that the low-to mid-latitude teleconnection was also active over annual-decadal timescales. It is likely a combination of external forcing, i.e., solar and volcanic, and internal feedbacks, that drives the synchronous ITCZ and NAO shifts via energy flux perturbations in the tropics.}, language = {en} } @article{StolbovaMartinBookhagenetal.2014, author = {Stolbova, Veronika and Martin, P. and Bookhagen, Bodo and Marwan, Norbert and Kurths, J{\"u}rgen}, title = {Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka}, series = {Nonlinear processes in geophysics}, volume = {21}, journal = {Nonlinear processes in geophysics}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1023-5809}, doi = {10.5194/npg-21-901-2014}, pages = {901 -- 917}, year = {2014}, abstract = {This paper employs a complex network approach to determine the topology and evolution of the network of extreme precipitation that governs the organization of extreme rainfall before, during, and after the Indian Summer Monsoon (ISM) season. We construct networks of extreme rainfall events during the ISM (June-September), post-monsoon (October-December), and pre-monsoon (March-May) periods from satellite-derived (Tropical Rainfall Measurement Mission, TRMM) and rain-gauge interpolated (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE) data sets. The structure of the networks is determined by the level of synchronization of extreme rainfall events between different grid cells throughout the Indian subcontinent. Through the analysis of various complex-network metrics, we describe typical repetitive patterns in North Pakistan (NP), the Eastern Ghats (EG), and the Tibetan Plateau (TP). These patterns appear during the pre-monsoon season, evolve during the ISM, and disappear during the post-monsoon season. These are important meteorological features that need further attention and that may be useful in ISM timing and strength prediction.}, language = {en} } @article{MarwanKurthsThomsenetal.2009, author = {Marwan, Norbert and Kurths, J{\"u}rgen and Thomsen, Jesper Skovhus and Felsenberg, Dieter and Saparin, Peter}, title = {Three-dimensional quantification of structures in trabecular bone using measures of complexity}, issn = {1539-3755}, doi = {10.1103/Physreve.79.021903}, year = {2009}, abstract = {The study of pathological changes of bone is an important task in diagnostic procedures of patients with metabolic bone diseases such as osteoporosis as well as in monitoring the health state of astronauts during long-term space flights. The recent availability of high-resolution three-dimensional (3D) imaging of bone challenges the development of data analysis techniques able to assess changes of the 3D microarchitecture of trabecular bone. We introduce an approach based on spatial geometrical properties and define structural measures of complexity for 3D image analysis. These measures evaluate different aspects of organization and complexity of 3D structures, such as complexity of its surface or shape variability. We apply these measures to 3D data acquired by high-resolution microcomputed tomography (mu CT) from human proximal tibiae and lumbar vertebrae at different stages of osteoporotic bone loss. The outcome is compared to the results of conventional static histomorphometry and exhibits clear relationships between the analyzed geometrical features of trabecular bone and loss of bone density, but also indicate that the measures reveal additional information about the structural composition of bone, which were not revealed by the static histomorphometry. Finally, we have studied the dependency of the developed measures of complexity on the spatial resolution of the mu CT data sets.}, language = {en} } @article{BreitenbachAdkinsMeyeretal.2010, author = {Breitenbach, Sebastian Franz Martin and Adkins, Jess F. and Meyer, Hanno and Marwan, Norbert and Kumar, Kanikicharla Krishna and Haug, Gerald H.}, title = {Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India}, issn = {0012-821X}, doi = {10.1016/j.epsl.2010.01.038}, year = {2010}, abstract = {To calibrate delta O-18 time-series from speleothems in the eastern Indian summer monsoon (ISM) region of India, and to understand the moisture regime over the northern Bay of Bengal (BoB) we analyze the delta O-18 and delta D of rainwater, collected in 2007 and 2008 near Cherrapunji, India. delta D values range from + 18.5 parts per thousand to 144.4 parts per thousand, while delta O-18 varies between +0.8 parts per thousand and 18.8 parts per thousand. The Local Meteoric Water Line (LMWL) is found to be indistinguishable from the Global Meteoric Water Line (GMWL). Late ISM (September-October) rainfall exhibits lowest delta O-18 and delta D values, with little relationship to the local precipitation amount. There is a trend to lighter isotope values over the course of the ISM, but it does not correlate with the patterns of temperature and rainfall amount delta O-18 and delta D time-series have to be interpreted with caution in terms of the 'amount effect' in this subtropical region. We find that the temporal trend in delta O-18 reflects increasing transport distance during the ISM, isotopic changes in the northern BoB surface waters during late ISM, and vapor re-equilibration with rain droplets. Using an isotope box model for surface ocean waters, we quantify the potential influence of river runoff on the isotopic composition of the seasonal freshwater plume in the northern BoB. Temporal variations in this source can contribute up to 25\% of the observed changes in stable isotopes of precipitation in NE India. To delineate other moisture sources, we use backward trajectory computations and find a strong correlation between source region and isotopic composition. Palaeoclimatic stable isotope time-series from northeast Indian speleothems likely reflect changes in moisture source and transport pathway, as well as the isotopic composition of the BoB surface water, all of which in turn reflect ISM strength. Stalagmite records from the region can therefore be interpreted as integrated measures of the ISM strength.}, language = {en} } @article{BoersBookhagenMarwanetal.2016, author = {Boers, Niklas and Bookhagen, Bodo and Marwan, Norbert and Kurths, J{\"u}rgen}, title = {Spatiotemporal characteristics and synchronization of extreme rainfall in South America with focus on the Andes Mountain range}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {46}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-015-2601-6}, pages = {601 -- 617}, year = {2016}, abstract = {The South American Andes are frequently exposed to intense rainfall events with varying moisture sources and precipitation-forming processes. In this study, we assess the spatiotemporal characteristics and geographical origins of rainfall over the South American continent. Using high-spatiotemporal resolution satellite data (TRMM 3B42 V7), we define four different types of rainfall events based on their (1) high magnitude, (2) long temporal extent, (3) large spatial extent, and (4) high magnitude, long temporal and large spatial extent combined. In a first step, we analyze the spatiotemporal characteristics of these events over the entire South American continent and integrate their impact for the main Andean hydrologic catchments. Our results indicate that events of type 1 make the overall highest contributions to total seasonal rainfall (up to 50\%). However, each consecutive episode of the infrequent events of type 4 still accounts for up to 20\% of total seasonal rainfall in the subtropical Argentinean plains. In a second step, we employ complex network theory to unravel possibly non-linear and long-ranged climatic linkages for these four event types on the high-elevation Altiplano-Puna Plateau as well as in the main river catchments along the foothills of the Andes. Our results suggest that one to two particularly large squall lines per season, originating from northern Brazil, indirectly trigger large, long-lasting thunderstorms on the Altiplano Plateau. In general, we observe that extreme rainfall in the catchments north of approximately 20 degrees S typically originates from the Amazon Basin, while extreme rainfall at the eastern Andean foothills south of 20 degrees S and the Puna Plateau originates from southeastern South America.}, language = {en} } @article{ZbilutMitchellGiulianietal.2004, author = {Zbilut, J. P. and Mitchell, J. C. and Giuliani, A. and Colosimo, A. and Marwan, Norbert and Webber, C. L.}, title = {Singular hydrophobicity patterns and net charge : a mesoscopic principle for protein aggregation/folding}, issn = {0378-4371}, year = {2004}, abstract = {A statistical model describing the propensity for protein aggregation is presented. Only amino-acid hydrophobicity values and calculated net charge are used for the model. The combined effects of hydrophobic patterns as computed by the signal analysis technique, recurrence quantification, plus calculated net charge were included in a function emphasizing the effect of singular hydrophobic patches which were found to be statistically significant for predicting aggregation propensity as quantified by fluorescence studies obtained from the literature. These results suggest preliminary evidence for a mesoscopic principle for protein folding/aggregation. (C) 2004 Elsevier B.V. All rights reserved}, language = {en} } @article{MarwanWesselMeyerfeldtetal.2002, author = {Marwan, Norbert and Wessel, Niels and Meyerfeldt, Udo and Schirdewan, Alexander and Kurths, J{\"u}rgen}, title = {Recurrence-plot-based measures of complexity and its application to heart-rate-variability data}, year = {2002}, abstract = {The knowledge of transitions between regular, laminar or chaotic behavior is essential to understand the underlying mechanisms behind complex systems. While several linear approaches are often insufficient to describe such processes, there are several nonlinear methods which however require rather long time observations. To overcome these difficulties, we propose measures of complexity based on vertical structures in recurrence plots and apply them to the logistic map as well as to heart rate variability data. For the logistic map these measures enable us not only to detect transitions between chaotic and periodic states, but also to identify laminar states, i.e. chaos-chaos transitions. The traditional recurrence quantification analysis fails to detect the latter transitions. Applying our new measures to the heart rate variability data, we are able to detect and quantify the laminar phases before a life-threatening cardiac arrhythmia occurs thereby facilitating a prediction of such an event. Our findings could be of importance for the therapy of malignant cardiac arrhythmias.}, language = {en} }