@article{XuNieWangetal.2021, author = {Xu, Xun and Nie, Yan and Wang, Weiwei and Ma, Nan and Lendlein, Andreas}, title = {Periodic thermomechanical modulation of toll-like receptor expression and distribution in mesenchymal stromal cells}, series = {MRS communications / a publication of the Materials Research Society}, volume = {11}, journal = {MRS communications / a publication of the Materials Research Society}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {2159-6867}, doi = {10.1557/s43579-021-00049-5}, pages = {425 -- 431}, year = {2021}, abstract = {Toll-like receptor (TLR) can trigger an immune response against virus including SARS-CoV-2. TLR expression/distribution is varying in mesenchymal stromal cells (MSCs) depending on their culture environments. Here, to explore the effect of periodic thermomechanical cues on TLRs, thermally controlled shape-memory polymer sheets with programmable actuation capacity were created. The proportion of MSCs expressing SARS-CoV-2-associated TLRs was increased upon stimulation. The TLR4/7 colocalization was promoted and retained in the endoplasmic reticula. The TLR redistribution was driven by myosin-mediated F-actin assembly. These results highlight the potential of boosting the immunity for combating COVID-19 via thermomechanical preconditioning of MSCs.}, language = {en} } @article{DengWangXuaetal.2020, author = {Deng, Zijun and Wang, Weiwei and Xua, Xun and Gould, Oliver E. C. and Kratz, Karl and Ma, Nan and Lendlein, Andreas}, title = {Polymeric sheet actuators with programmable bioinstructivity}, series = {PNAS}, volume = {117}, journal = {PNAS}, number = {4}, publisher = {National Academy of Sciences}, address = {Washington, DC}, issn = {1091-6490}, doi = {10.1073/pnas.1910668117}, pages = {1895 -- 1901}, year = {2020}, abstract = {Stem cells are capable of sensing and processing environmental inputs, converting this information to output a specific cell lineage through signaling cascades. Despite the combinatorial nature of mechanical, thermal, and biochemical signals, these stimuli have typically been decoupled and applied independently, requiring continuous regulation by controlling units. We employ a programmable polymer actuator sheet to autonomously synchronize thermal and mechanical signals applied to mesenchymal stem cells (MSC5). Using a grid on its underside, the shape change of polymer sheet, as well as cell morphology, calcium (Ca2+) influx, and focal adhesion assembly, could be visualized and quantified. This paper gives compelling evidence that the temperature sensing and mechanosensing of MSC5 are interconnected via intracellular Ca2+. Up-regulated Ca2+ levels lead to a remarkable alteration of histone H3K9 acetylation and activation of osteogenic related genes. The interplay of physical, thermal, and biochemical signaling was utilized to accelerate the cell differentiation toward osteogenic lineage. The approach of programmable bioinstructivity provides a fundamental principle for functional biomaterials exhibiting multifaceted stimuli on differentiation programs. Technological impact is expected in the tissue engineering of periosteum for treating bone defects.}, language = {en} }