@phdthesis{Mueller2017, author = {M{\"u}ller, Juliane}, title = {Trunk loading and back pain}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102428}, school = {Universit{\"a}t Potsdam}, pages = {ix, 123}, year = {2017}, abstract = {An essential function of the trunk is the compensation of external forces and loads in order to guarantee stability. Stabilising the trunk during sudden, repetitive loading in everyday tasks, as well as during performance is important in order to protect against injury. Hence, reduced trunk stability is accepted as a risk factor for the development of back pain (BP). An altered activity pattern including extended response and activation times as well as increased co-contraction of the trunk muscles as well as a reduced range of motion and increased movement variability of the trunk are evident in back pain patients (BPP). These differences to healthy controls (H) have been evaluated primarily in quasi-static test situations involving isolated loading directly to the trunk. Nevertheless, transferability to everyday, dynamic situations is under debate. Therefore, the aim of this project is to analyse 3-dimensional motion and neuromuscular reflex activity of the trunk as response to dynamic trunk loading in healthy (H) and back pain patients (BPP). A measurement tool was developed to assess trunk stability, consisting of dynamic test situations. During these tests, loading of the trunk is generated by the upper and lower limbs with and without additional perturbation. Therefore, lifting of objects and stumbling while walking are adequate represents. With the help of a 12-lead EMG, neuromuscular activity of the muscles encompassing the trunk was assessed. In addition, three-dimensional trunk motion was analysed using a newly developed multi-segmental trunk model. The set-up was checked for reproducibility as well as validity. Afterwards, the defined measurement set-up was applied to assess trunk stability in comparisons of healthy and back pain patients. Clinically acceptable to excellent reliability could be shown for the methods (EMG/kinematics) used in the test situations. No changes in trunk motion pattern could be observed in healthy adults during continuous loading (lifting of objects) of different weights. In contrast, sudden loading of the trunk through perturbations to the lower limbs during walking led to an increased neuromuscular activity and ROM of the trunk. Moreover, BPP showed a delayed muscle response time and extended duration until maximum neuromuscular activity in response to sudden walking perturbations compared to healthy controls. In addition, a reduced lateral flexion of the trunk during perturbation could be shown in BPP. It is concluded that perturbed gait seems suitable to provoke higher demands on trunk stability in adults. The altered neuromuscular and kinematic compensation pattern in back pain patients (BPP) can be interpreted as increased spine loading and reduced trunk stability in patients. Therefore, this novel assessment of trunk stability is suitable to identify deficits in BPP. Assignment of affected BPP to therapy interventions with focus on stabilisation of the trunk aiming to improve neuromuscular control in dynamic situations is implied. Hence, sensorimotor training (SMT) to enhance trunk stability and compensation of unexpected sudden loading should be preferred.}, language = {en} }