@article{JelkenPandiyarajanGenzeretal.2018, author = {Jelken, Joachim and Pandiyarajan, Chinnayan Kannan and Genzer, Jan and Lomadze, Nino and Santer, Svetlana}, title = {Fabrication of flexible hydrogel sheets featuring periodically spaced circular holes with continuously adjustable size in realtime}, series = {ACS applied materials \& interfaces}, volume = {10}, journal = {ACS applied materials \& interfaces}, number = {36}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.8b09580}, pages = {30844 -- 30851}, year = {2018}, abstract = {We report on the formation of stimuli-responsive structured hydrogel thin films whose pattern geometry can be adjusted on demand and tuned reversibly by varying solvent quality or by changing temperature. The hydrogel films, similar to 100 nm in thickness, were prepared by depositing layers of random copolymers comprising N-isopropylacrylamide and ultraviolet (UV)-active methacryloyloxybenzophenone units onto solid substrates. A two-beam interference pattern technique was used to cross-link the selected areas of the film; any unreacted material was extracted using ethanol after UV light-assisted cross-linking. In this way, we produced nanoholes, perfectly ordered structures with a narrow size distribution, negligible tortuosity, adjustable periodicity, and a high density. The diameter of the circular holes ranged from a few micrometers down to several tens of nanometers; the hole periodicity could be adjusted readily by changing the optical period of the UV interference pattern. The holes were reversibly closed and opened by swelling/deswelling the polymer networks in the presence of ethanol and water, respectively, at various temperatures. The reversible regulation of the hole diameter can be repeated many times within a few seconds. The hydrogel sheet with circular holes periodically arranged may also be transferred onto different substrates and be employed as tunable templates for the deposition of desired substances.}, language = {en} } @article{LoebnerLomadzeKopyshevetal.2018, author = {Loebner, Sarah and Lomadze, Nino and Kopyshev, Alexey and Koch, Markus and Guskova, Olga and Saphiannikova, Marina and Santer, Svetlana}, title = {Light-Induced Deformation of Azobenzene-Containing Colloidal Spheres}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {122}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {6}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.7b11644}, pages = {2001 -- 2009}, year = {2018}, abstract = {We report on light-induced deformation of colloidal spheres consisting of azobenzene-containing polymers. The colloids of the size between 60 nm and 2 mu m in diameter were drop casted on a glass surface and irradiated with linearly polarized light. It was found that colloidal particles can be deformed up to ca. 6 times of their initial diameter. The maximum degree of deformation depends on the irradiation wavelength and intensity, as well as on colloidal particles size. On the basis of recently proposed theory by Toshchevikov et al. [J. Phys. Chem. Lett. 2017, 8, 1094], we calculated the optomechanical stresses (ca. 100 MPa) needed for such giant deformations and compared them with the experimental results.}, language = {en} }